首页 | 本学科首页   官方微博 | 高级检索  
     


Equivalent circuit method for static and dynamic analysis of magnetoelectric laminated composites
Authors:ShuXiang Dong  JunYi Zhai
Affiliation:(1) Advanced Materials & Nanotechnology, College of Engineering, Peking University, Beijing, 1000871, China;(2) Virginia Tech, Materials Science & Engineering, Blacksburg, VA 24061, USA
Abstract:Magnetoelectric equivalent circuit analytical method is presented for laminate composites of magneto- strictive Terfenol-D (TbxDy1-xFe2) and piezoelectric Pb(Zr1-xTix)O3 (PZT) operated in longitudinal mag- netized and transverse polarized (or L-T), and transverse magnetized and transverse polarized (or T-T) modes. Magnetoelectric (ME) couplings both at low-frequency and resonance-frequency have been studied, and our analysis predicts that (i) the ME voltage coefficients of both L-T and T-T modes in- crease with increasing the thickness of the piezoelectric phase whereas magnetostrictive phase thickness keeps constant, and then tend to saturation when the thickness ratio of piezoelectric phase to magnetic phases is >3; (ii) there are the optimum thickness ratios that maximize magnetoelectric (ME) voltage coefficients for the two modes, which are dependent on elastic compliances ratio of piezoelec- tric phase and magnetostrictive phase; and (iii) the ME voltage coefficients are dramatically increased by a factor of ~Qm, when operated at resonance frequency. A series of Terfenol-D/PZT laminates were fabricated, and the results were compared with the theoretical ones. Experiments confirmed that equivalent circuit method is a useful tool for optimum designs of ME laminates.
Keywords:magnetoelectric   piezoelectric   equivalent circuit method   Terfnol-D   PZT
本文献已被 维普 SpringerLink 等数据库收录!
点击此处可从《科学通报(英文版)》浏览原始摘要信息
点击此处可从《科学通报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号