首页 | 本学科首页   官方微博 | 高级检索  
     

遗传神经网络方法预测地下工程位移演化规律
引用本文:王述红,田军,肖福坤,刘宇德,刘斌. 遗传神经网络方法预测地下工程位移演化规律[J]. 东北大学学报(自然科学版), 2000, 21(5): 562-565
作者姓名:王述红  田军  肖福坤  刘宇德  刘斌
作者单位:东北大学资源与土木工程学院!辽宁沈阳110006;东北大学资源与土木工程学院!辽宁沈阳110006;黑龙江矿业学院!黑龙江鸡西158105;东北大学资源与土木工程学院!辽宁沈阳110006;东北大学资源与土木工程学院!辽宁沈阳110006
基金项目:原冶金工业部基础研究项目资助! ( 930 192 )
摘    要:提出并分析了一种用于隧道和地下结构位移演变预测预报的遗传神经网络方法·应用遗传算法优化传统的神经网络结构,避免了人为选择网络结构的盲目性,较好地解决了神经网络结构选择问题,同时提高了网络学习的效率和推广预测能力;利用这种非线性智能识别新方法,预测下步施工位移变形量,并与工程中监测到的历史数据进行对比分析,以便工程技术人员据此及时调整和优化施工步序,维护地下结构的稳定性·工程实例分析表明,该方法随着样本的积累,预测精度不断提高,并具有实时性的优点,具有广泛的应用前景

关 键 词:遗传神经网络模式  位移  预测
修稿时间::

Displacement Evolution Forecast by Genetic-Neural Network Method in Underground Engineering
WANG Shu-hong,TIAN Jun,XIAO Fu-kun,LIU Yu-de,LIU Bin. Displacement Evolution Forecast by Genetic-Neural Network Method in Underground Engineering[J]. Journal of Northeastern University(Natural Science), 2000, 21(5): 562-565
Authors:WANG Shu-hong  TIAN Jun  XIAO Fu-kun  LIU Yu-de  LIU Bin
Abstract:The genetic neural network method was used in forecasting the displacement evolution history in tunnel and underground structure. It is shown that the neural network structure in addition of the genetic algorithm optimized system can escape from the blindness which is the common phenomenon in man made choice to the network structure. The neural structure enhances the efficiency of the network study and the capability of the forecasting application. It allows the engineering staff convenient to adjust and optimize the construction step in time by non linear intelligent recognition to forecast the displace distortion. Measurement to make a contrast analysis with the historical data in order to maintain the stability of the underground structure. The engineering case analyses indicate that there is an extensive prospect for this real time prediction method and the forecasted precision can be continuously better with the accumulating of the samples.
Keywords:model of genetic algorithm & neural network  displacement  forecast
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号