首页 | 本学科首页   官方微博 | 高级检索  
     

基于LSTM-RBF的水路货运量预测
引用本文:王鑫鑫,沈晓攀,王琪,徐仟. 基于LSTM-RBF的水路货运量预测[J]. 科学技术与工程, 2023, 23(18): 7995-8001
作者姓名:王鑫鑫  沈晓攀  王琪  徐仟
作者单位:武汉科技大学
基金项目:湖北省教育厅高等学校哲学社会科学研究重大项目(19ZD015)研究成果之一。
摘    要:水路运输是交通和货运的重要组成部分,水路货运量的预测对各地经济发展有重要意义。近年来随着经济形势的变化和多式联运的快速发展,水路货运量的数据波动加大,精准预测的难度变得更大。因此提出一种基于长短期记忆网络(Long Short-Term Memory,LSTM)和径向基神经网络(Radial basis function,RBF)的组合预测模型 。在LSTM-RBF预测模型中,第一阶段通过LSTM对各指标进行精准预测,减少指标值误差对目标值预测带来的影响;第二阶段训练RBF神经网络并在未来指标值的基础上对目标值(水路货运量)进行预测。该模型既避免了时间序列预测仅考虑单一影响因素的缺陷,又能够把LSTM的长时记忆优势带入到RBF的回归预测中。实验结果表明,LSTM-RBF预测模型在均方根误差和拟合度方面,均优于其他对比模型,该预测模型对水路货运量的预测有着较高的准确度。

关 键 词:水路货运量  偏相关分析  LSTM模型  RBF模型  组合预测
收稿时间:2022-10-12
修稿时间:2023-04-18

Prediction of waterway freight volume with LSTM-RBF
Wang Xinxin,Shen Xiaopan,Wang Qi,Xu Qian. Prediction of waterway freight volume with LSTM-RBF[J]. Science Technology and Engineering, 2023, 23(18): 7995-8001
Authors:Wang Xinxin  Shen Xiaopan  Wang Qi  Xu Qian
Affiliation:Wuhan University of Science and Technology
Abstract:Water transportation is an important part of transportation and freight, and the forecasting of water freight volume is of great value to the economic development. In recent years, with the change of the economic situation and the rapid development of multimodal transport, the data fluctuation of water transport freight volume has increased, and the difficulty of accurate prediction has become greater. Therefore, a combined forecasting model based on long short-term memory (LSTM) and radial basis function (RBF) was proposed, LSTM is used to accurately forecast each index to reduce the impact of index value error on target value prediction; and then the RBF neural network is trained to forecast the target value (waterway freight volume) which based on the future index value. The LSTM-RBF model not only avoids the defect of single influencing factor in time series forecasting, but also can bring the advantage of LSTM''s long-term memory into RBF''s regression forecasting. The experimental results show that the LSTM-RBF model is superior to the other comparison models in terms of root-mean-square error and fitting degree, and this model has high accuracy in the forecasting of waterway freight volume.
Keywords:
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号