首页 | 本学科首页   官方微博 | 高级检索  
     

基于全排序与混沌多样性的高维目标进化算法
引用本文:石林江,田建勇. 基于全排序与混沌多样性的高维目标进化算法[J]. 科学技术与工程, 2014, 14(28)
作者姓名:石林江  田建勇
作者单位:1. 安顺学院电子与信息工程学院,安顺,561000
2. 山东大学信息科学与工程学院,济南,250100
基金项目:贵州省教育厅自然科学基金(6932582)
摘    要:当前大部分多目标进化算法采用Pareto排序为种群个体指定适应度值;然而随着优化目标个数增加,种群中非支配个体的比例越来越大,造成上述算法的搜索能力迅速下降。针对高维(4个以上)目标优化问题,提出了一种全排序方法;该排序方法与Pareto排序具有一致性,并且能够对非支配解进行比较;因此基于全排序的多目标进化算法不受目标个数增加的影响。为了提高算法的优化效果,设计了一个混沌映射算子,用来周期性地初始化种群,以保证种群的多样性与均匀分布。最后,采用标准测试问题对所提算法与著名的非支配快速排序遗传算法(NSGA2)进行了实验比较。结果表明在高维目标优化问题中,所提算法无论在收敛精度,还是算法运行效率上都高于NSGA2算法。

关 键 词:多目标进化  高维目标  全排序  混沌
收稿时间:2014-04-21
修稿时间:2014-07-31

Many-objective evolutionary algorithm based on full ranking. Computer Engineering and Applications
SHI Linyong and TIAN Jianyong. Many-objective evolutionary algorithm based on full ranking. Computer Engineering and Applications[J]. Science Technology and Engineering, 2014, 14(28)
Authors:SHI Linyong and TIAN Jianyong
Abstract:Most of Smultiobjective evolutionarySalgorithm adopt Pareto-rankingSand their searching abilitySdecrease rapidly with the increase of objective number. That is because the proportion of nondominatedSindividualsSin the population is big. For high-dimensional multi-objective optimization problem, it proposes aSfull ranking method. The ranking is consistent with Pareto ranking,SandStheSnondominated solutionScan be compared by the full ranking,.SIn order to improve theSefficiency of optimizationSalgorithm,Sit designs aSchaotic model toSperiodically initialize population.SFinally,Sthe proposed algorithmSand a well-knownSnondominatedSsortingSgenetic algorithm (NSGA2)Sare compared using the standardStest problems. The experimentSresults show thatSthe proposed algorithmSis better than NSGA2Salgorithm both in convergenceSaccuracy andSefficiency of the algorithm.
Keywords:multiobjective evolutionary algorithm   high-dimension objective   full ranking   chaotic model
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号