首页 | 本学科首页   官方微博 | 高级检索  
     

两种标准下一类平面动力系统极限环的数值计算
引用本文:周珍楠,李焱. 两种标准下一类平面动力系统极限环的数值计算[J]. 曲阜师范大学学报, 2009, 35(1): 37-40
作者姓名:周珍楠  李焱
作者单位:吉林大学数学学院信息与计算科学系,130012,吉林省长春市;吉林大学数学学院信息与计算科学系,130012,吉林省长春市
摘    要:通过引入网函数的概念定义了平面动力系统中极限环数值解的概念,然后以van der Pol方程对应的平面系统为例,使用四阶Runge—Kutta方法建立其方程组的数值解法,并以此为基础建立了极限环的数值解法.特别地,引入范数估计和流量估计两种距离标准,从几何直观性和实际意义两个角度刻画了迭代精度.特定参数取值的算例证明了该方法的有效性.

关 键 词:极限环  数值解  Runge-Kutta方法  van der Pol方程  范数估计  流量估计

Computation of Limit Circles for Certain Plane Dynamic System Via Two Metrics
ZHOU Zhen-nan,LI Yan. Computation of Limit Circles for Certain Plane Dynamic System Via Two Metrics[J]. Journal of Qufu Normal University(Natural Science), 2009, 35(1): 37-40
Authors:ZHOU Zhen-nan  LI Yan
Affiliation:Deparment of Mathematical and Tehnology;Jilin University;130012;Changchun;Jilin;PRC
Abstract:The concept of computational solution for limit circles is defined with the introduction of the concept of net function,subsequently,with the van der Pol equation taken as an example,the computational solution for the set of equations is established via the Runge-Kutta method,at the basis of which,the computational solution for the limit circles is constructed afterwards.Especially,the metrics of norm estimation and flow estimation are introduced,so that the iterative precision of the computational solution...
Keywords:limit circle  computational solution  Runge-Kutta method  van der Pol equation  norm estimation  flow estimation  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号