首页 | 本学科首页   官方微博 | 高级检索  
     

结合离散熵和自组织神经网络(SOM)的边缘检测方法
引用本文:王坤,高立群,片兆宇,郭丽. 结合离散熵和自组织神经网络(SOM)的边缘检测方法[J]. 东北大学学报(自然科学版), 2008, 29(5): 641-644. DOI: -
作者姓名:王坤  高立群  片兆宇  郭丽
作者单位:东北大学信息科学与工程学院,辽宁沈阳,110004;东北大学信息科学与工程学院,辽宁沈阳,110004;东北大学信息科学与工程学院,辽宁沈阳,110004;东北大学信息科学与工程学院,辽宁沈阳,110004
摘    要:提出了一种结合图像离散熵和自组织神经网络的边缘检测方法.首先,用离散熵选定阈值来分割图像的平滑区域和灰度变化剧烈的区域,用来减少计算量;其次将灰度图像转化为理想二值像素模式;定义了6个边缘类型和6个原型向量.将这些边缘向量作为神经网络的输入,通过SOM对其进行边缘分类从而获得边缘图像.最后将斑点边缘从边缘图像中去除即得到理想的边缘图像.实验结果表明,与其他的边缘检测方法相比获得了较为理想的边缘.

关 键 词:边缘检测  离散熵  阈值  自组织神经网络  斑点噪声
文章编号:1005-3026(2008)05-0641-04
修稿时间:2007-04-12

Edge Detection Method Combing Discrete Information Entropy with Self-Organizing Map
WANG Kun,GAO Li-qun,PIAN Zhao-yu,GUO Li. Edge Detection Method Combing Discrete Information Entropy with Self-Organizing Map[J]. Journal of Northeastern University(Natural Science), 2008, 29(5): 641-644. DOI: -
Authors:WANG Kun  GAO Li-qun  PIAN Zhao-yu  GUO Li
Affiliation:(1) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China
Abstract:An edge detection method is proposed combining image discrete information entropy with self-organizing map(SOM).A threshold is chosen from some different information entropies to segment the smooth region from the region where the gray level abruptly changes so as to reduce computation.Then,the gray level images are transformed into the ideal binary pattern of pixels.Six types of edge and six prototype vectors are defined,among them the latter are taken as inputs into SOM to classify the edge types and then obtain edge images from which the speckled edges are removed to acquire ideal edge images.Experimental results showed that the edge images gained by the method proposed are better than those by other edge detection methods.
Keywords:edge detection  discrete information entropy  threshold  self-organizing map  speckle noise
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号