首页 | 本学科首页   官方微博 | 高级检索  
     

基于多重渐消因子的强跟踪SVDCKF组合导航算法
引用本文:熊鑫,黄国勇,王晓东. 基于多重渐消因子的强跟踪SVDCKF组合导航算法[J]. 重庆邮电大学学报(自然科学版), 2021, 33(2): 330-336. DOI: 10.3979/j.issn.1673-825X.201905140194
作者姓名:熊鑫  黄国勇  王晓东
作者单位:昆明理工大学 信息工程与自动化学院,昆明650500;云南省矿物管道输送工程技术研究中心,昆明650500
基金项目:云南省科技计划重大专项项目(2015ZC005)
摘    要:针对标准容积卡尔曼滤波(cubature Kalman filter,CKF)在载体状态突变时滤波精度下降的问题,提出了一种基于多重渐消因子的强跟踪SVDCKF组合导航(strong tracking SVDCKF integrated navigation algorithm based on multiple fa...

关 键 词:强跟踪  卡方检验  多重渐消因子  容积卡尔曼滤波(CKF)  组合导航
收稿时间:2019-05-14
修稿时间:2020-12-05

Strong tracking SVDCKF integrated navigation algorithm based on multiple fading factors
XIONG Xin,HUANG Guoyong,WANG Xiaodong. Strong tracking SVDCKF integrated navigation algorithm based on multiple fading factors[J]. Journal of Chongqing University of Posts and Telecommunications, 2021, 33(2): 330-336. DOI: 10.3979/j.issn.1673-825X.201905140194
Authors:XIONG Xin  HUANG Guoyong  WANG Xiaodong
Affiliation:School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China;Engineering Research Center for Mineral Pipeline Transportation, Kunming 650500, P. R. China
Abstract:When the carrier is in a state of sudden change, the filtering accuracy of the standard CKF will decrease. To solve this problem, a strong tracking SVDCKF integrated navigation algorithm based on multiple fading factors (MST-SVDCKF) is proposed. The singular value decomposition (SVD) is introduced to replace the original Cholesky decomposition in standard CKF, which improves the numerical stability of the state covariance matrix decomposition iteration. Then, the state of the system is evaluated by the chi-square test, and if the system has a sudden change in state, the multi-fade factor is employed to adjust the prediction state covariance matrix, which enables different filter channels to obtain different fade-out capabilities. In this way the strong tracking of the true state of carrier can be achieved. The simulation results show that the proposed algorithm has stronger adjustment ability and higher filtering precision than CKF and traditional STCKF.
Keywords:strong tracking filter  chi-square test  multi-fade factor  cubature Kalman filter(CKF)  integrated navigation
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号