首页 | 本学科首页   官方微博 | 高级检索  
     

基于投资犹豫的欧式期权定价模型
引用本文:明雷,杨胜刚. 基于投资犹豫的欧式期权定价模型[J]. 系统工程理论与实践, 2016, 36(6): 1392-1398. DOI: 10.12011/1000-6788(2016)06-1392-07
作者姓名:明雷  杨胜刚
作者单位:湖南大学 金融与统计学院, 长沙 410079
基金项目:国家自然科学基金创新群体项目(71221001);国家社会科学基金重大项目(12&ZD053);湖南省研究生创新项目(CX2015B100)
摘    要:文章首先引入三角直觉模糊数来刻画投资者的犹豫程度和期权价格估计的不确定性,构建了基于三角直觉模糊数的Black-Scholes期权定价模型,并用风险中性的方法给出了欧式期权价格的解析表达式,该结论是Yoshida更一般的情况.然后,本文进行了数值分析,给出了欧式期权价格的区间值,并进行了参数敏感性分析.研究结果表明:基于三角直觉模糊数的Black-Scholes期权定价模型更能体现投资者的犹豫程度.

关 键 词:欧式期权  三角直觉模糊数  犹豫程度  风险中性定价  
收稿时间:2015-01-25

Pricing European options based on the hesitation degree of investors
MING Lei,YANG Shenggang. Pricing European options based on the hesitation degree of investors[J]. Systems Engineering —Theory & Practice, 2016, 36(6): 1392-1398. DOI: 10.12011/1000-6788(2016)06-1392-07
Authors:MING Lei  YANG Shenggang
Affiliation:School of Finance and Statistics, Hunan University, Changsha 410079, China
Abstract:Initially, this paper portrays the hesitancy degree of investors and the uncertainty of the estimated value of options price. We construct a novel Black-Scholes option pricing model under the triangular intuitionistic fuzzy number. And we get the explicit analytical solution of European options by taking advantage of the risk neutral pricing method. Then we give the numerical analysis and get the interval value of the options price. Eventually, this paper analyzes the sensibility of parameters of European options price' formula. The results show that the model based on the triangular intuitionistic fuzzy number can reflect the hesitancy degree of investors much better than other models.
Keywords:European options  triangular intuitionistic fuzzy number  hesitancy degree  risk-neutral pricing
本文献已被 CNKI 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号