首页 | 本学科首页   官方微博 | 高级检索  
     

基于网络搜索和CLSI-EMD-BP的旅游客流量预测研究
引用本文:李晓炫,吕本富,曾鹏志,刘金. 基于网络搜索和CLSI-EMD-BP的旅游客流量预测研究[J]. 系统工程理论与实践, 2017, 37(1): 106-118. DOI: 10.12011/1000-6788(2017)01-0106-13
作者姓名:李晓炫  吕本富  曾鹏志  刘金
作者单位:1. 中国科学院大学 经济与管理学院, 北京 100190;2. 中国科学院 大数据挖掘与知识管理重点实验室, 北京 100190
基金项目:国家自然科学基金(71202115,71202155,71172199)
摘    要:准确的旅游预测对于旅游政策制定当局和游客都具有重要意义,可以帮助资源的合理配置并避免拥堵事件和游客滞留事件的发生.为了提高旅游预测的准确性,本文考虑噪声在预测中的干扰,提出一种基于网络搜索的CLSI-EMD-BP预测模型.该模型首先利用CLSI方法对网络搜索数据进行指数合成,并利用EMD对序列进行噪声处理,将高频噪声从原序列中分离,再利用去噪处理后的网络搜索数据对旅游客流量进行预测.实证分析以九寨沟为例对预测期内未来22周旅游客流量进行预测发现,基于网络搜索的CLSI-EMD-BP预测误差显著低于时间序列、网络搜索和BP神经网络三个基准模型.该结论一方面说明了本文预测模型的改进作用,另一方面也表明了噪声处理在预测中的必要性.

关 键 词:网络搜索  旅游预测  CLSI指数合成  EMD经验模态分解  BP神经网络  
收稿时间:2015-05-21

Tourism prediction using web search data based on CLSI-EMD-BP
LI Xiaoxuan,L,#,Benfu,ZENG Pengzhi,LIU Jinxuan. Tourism prediction using web search data based on CLSI-EMD-BP[J]. Systems Engineering —Theory & Practice, 2017, 37(1): 106-118. DOI: 10.12011/1000-6788(2017)01-0106-13
Authors:LI Xiaoxuan  L&#  Benfu  ZENG Pengzhi  LIU Jinxuan
Affiliation:1. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China;2. The Key Laboratory of Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100190, China
Abstract:Predicting tourism traffic accurately plays an important role in making policies for tourist administration. It helps to distribute the resources reasonably and avoid the tourism congestions. To improve the tourism prediction accuracy, this study considered the noise interference and proposed a forecast model of CLSI-EMD-BP using web search data. This model firstly applied CLSI to combine the web search data into a search index, then it denoised the series with EMD. EMD extracted the high frequency noise from the original series. The low frequency series of search index would be used to predict the low frequency tourism series. Taking Jiuzhaigou as an example, this study trained the model and predicted the next 22 weeks tourism arrivals. The conclusion demonstrated that the forecast error of CLSI-EMD-BP model is lower remarkably than the baselines of time series model, the web search data model and the BP network model. This revealed that nosing processing is necessary as well as CLSI-EMD-BP forecast model can improve the prediction accuracy.
Keywords:web search data  tourism prediction  composite leading search index (CLSI)  empirical mode decomposition (EMD)  BP network
本文献已被 CNKI 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号