首页 | 本学科首页   官方微博 | 高级检索  
     

基于在线学习优化动态模型库的多模型自适应控制
引用本文:钱承山,吴庆宪,姜长生. 基于在线学习优化动态模型库的多模型自适应控制[J]. 吉林大学学报(理学版), 2007, 45(4): 601-606
作者姓名:钱承山  吴庆宪  姜长生
作者单位:南京航空航天大学,自动化学院模式识别与智能控制实验室,南京,210016;泰山学院,山东省,泰安,271021;南京航空航天大学,自动化学院模式识别与智能控制实验室,南京,210016
摘    要:提出一种通过在线学习优化动态模型库的方法. 当子模型数量增长达到设定规模时, 根据动态模型库中各子模型与实际对象的匹配程度, 选取匹配程度最低的旧模型删除, 并添加新建子模型, 从而维持动态模型库在设定规模以内, 解决了在线学习建立动态模型库子模型数量不断增长的问题, 避免了子模型数量的过度增长而引起的计算量增加和性能下降, 并通过仿真证明了算法的有效性.

关 键 词:多模型自适应控制  在线学习  动态模型库  优化
文章编号:1671-5489(2007)04-0601-06
收稿时间:2006-07-29
修稿时间:2006-07-29

Multi-model Adaptive Control Based on Online Learning and Optimizing Dynamic Model Bank
QIAN Cheng-shan,WU Qing-xian,JIANG Chang-sheng. Multi-model Adaptive Control Based on Online Learning and Optimizing Dynamic Model Bank[J]. Journal of Jilin University: Sci Ed, 2007, 45(4): 601-606
Authors:QIAN Cheng-shan  WU Qing-xian  JIANG Chang-sheng
Affiliation:1. Pattern Recognition and Intelligent Control Laboratory, Automation College, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 2. Taishan College, Tai’an 271021, Shandong Province, China
Abstract:A method of optimizing the dynamic model bank that is based on online learning is proposed in this paper. When the number of models reaches the set limitation, the old model, which has the lowest matching degree according to the matching extent between the plant and the models, is deleted for the maintenance of the size of the dynamic model bank, and then the new model is added to the dynamic model bank. Therefore, the problems that arise when the number of models increases and results in a significant grow in computational complexity as well as a decrease in the performance level are solved. The effectiveness of the proposed method is demonstrated by the simulation results.
Keywords:multi-model adaptive control    online learning   dynamic model bank   optimize
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号