首页 | 本学科首页   官方微博 | 高级检索  
     

集值离散动力系统的拓扑遍历性、拓扑熵与混沌
引用本文:王辉,范钦杰. 集值离散动力系统的拓扑遍历性、拓扑熵与混沌[J]. 吉林大学学报(理学版), 2007, 45(6): 903-906
作者姓名:王辉  范钦杰
作者单位:吉林师范大学,数学学院,吉林省,四平,136000;吉林师范大学,数学学院,吉林省,四平,136000
摘    要:设(X,d)为紧致度量空间, f: X→X连续, (K(X),H)是X所有非空紧致子集构成的紧致度量空间. 通过研究点运动与点集运动的关系, 证明了集值映射拓扑遍历与f拓扑双重遍历等价并构造一个零拓扑熵且不具有任何混沌性质的紧致系统, 其诱导的集值映射有无穷拓扑熵且分布混沌, 表明集值离散动力系统的拓扑复杂性可以远远大于原系统.

关 键 词:集值映射  拓扑遍历  拓扑熵  分布混沌
文章编号:1671-5489(2007)06-0903-04
收稿时间:2007-01-19
修稿时间:2007-01-19

Topological Ergodicity, Entropy and Chaos of Set-valued Discrete Systems
WANG Hui,FAN Qin-jie. Topological Ergodicity, Entropy and Chaos of Set-valued Discrete Systems[J]. Journal of Jilin University: Sci Ed, 2007, 45(6): 903-906
Authors:WANG Hui  FAN Qin-jie
Affiliation:College of Mathematics, Jilin Normal University, Siping 136000, Jilin Province, China
Abstract:Let (X,d)be a compact metric space, f: X→X a continuous map, and (K(X),H) a compact metric space consisting of all non empty compact subsets of X. It has been proved that the topological ergodicity of set valued map is equivalent to the topological double ergodicityof f by studying the relation between the motion of points and the motion of sets; moreover, a compactsystem has been constructed which has zero topological entropy and no chaotic property, but the inducedset valued map of which has infinite to pological entropy and distributional chaos, this implies that the topological complexity of could be far greater than that of f.
Keywords:set-valued map    topological ergodicity    topological entropy    distributional chaos
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号