首页 | 本学科首页   官方微博 | 高级检索  
     

基于触觉P300的脑控下肢康复机器人
引用本文:张翔,郭士杰,陈玲玲,田玺伟,段晓宇. 基于触觉P300的脑控下肢康复机器人[J]. 科学技术与工程, 2022, 22(35): 15659-15666
作者姓名:张翔  郭士杰  陈玲玲  田玺伟  段晓宇
作者单位:河北工业大学电气工程学院;河北工业大学电气工程学院;河北工业大学省部共建电工装备可靠性与智能化国家重点实验室;智能康复装置与检测技术教育部工程研究中心;智能康复装置与检测技术教育部工程研究中心;河北工业大学人工智能与数据科学学院
基金项目:基于触觉诱发脑机接口的康复机器人主动控制系统研发 (21S31902500)
摘    要:基于P300信号的脑机接口技术在康复医疗领域具有广阔的应用前景,但P300信号的诱发方式多为视听刺激诱发,容易导致患者视听疲劳,同时也限制了视听障碍患者的使用。针对这些不足,设计一种基于触觉P300的脑控下肢康复机器人系统,在被试的左右食指处各放置一个振动器,通过调整左右手振动器的刺激间隔、刺激时长及刺激比例让P300信号更容易诱发和区分;利用共空间模式算法和支持向量机对信号进行特征提取和分类。被试通过选择关注左手或右手的振动刺激输出不同指令,从而控制下肢康复机器人进行相应动作。实验证明,被试通过感受振动刺激可以轻松诱发脑电中的P300信号,在不进行P300信号平均叠加的条件下,分类准确率为86.50%,既保证了较高的分类准确率,又缩短了指令输出时间。每位被试均可通过下肢康复系统顺利完成训练任务,证明了该方法的可行性。

关 键 词:脑机接口   触觉刺激   P300范式   下肢康复机器人   共空间模式
收稿时间:2022-04-20
修稿时间:2022-09-26

Brain-Controlled Lower Limb Rehabilitation Robot Based on Tactile P300
Zhang Xiang,Guo Shijie,Chen Lingling,Tian Xiwei,Duan Xiaoyu. Brain-Controlled Lower Limb Rehabilitation Robot Based on Tactile P300[J]. Science Technology and Engineering, 2022, 22(35): 15659-15666
Authors:Zhang Xiang  Guo Shijie  Chen Lingling  Tian Xiwei  Duan Xiaoyu
Affiliation:College of Electrical Engineering, Hebei University of Technology
Abstract:Brain-computer interface technology based on P300 signal has broad application prospects in the field of rehabilitation medicine. However, the induction mode of P300 signal is mostly induced by audio-visual stimulation, which is easy to cause audio-visual fatigue of patients, and also limits the use of patients with audio-visual disorders. In view of these shortcomings, a brain-controlled lower limb rehabilitation robot system based on tactile P300 was designed. A vibrator was placed on the left and right index finger of the subjects, and the stimulation interval, duration and ratio of the left and right vibrators were adjusted to make the P300 signals more easily induced and distinguished. The common spatial pattern algorithm and support vector machine was used to extract and classify the signal. The subjects selected the vibration stimuli of the left or right hand to output different instructions, so as to control the lower limb rehabilitation robot to carry out corresponding actions. Experiments show that subjects can easily induce P300 signals in EEG by feeling vibration stimulation. The classification accuracy is 86.50% without average superposition of P300 signals, which not only ensures high classification accuracy, but also shortens the instruction output time. Each subject can successfully complete the training task through the lower limb rehabilitation system, which proves the feasibility of the method.
Keywords:brain-computer interface   tactile stimulation   P300 paradigm   lower limb rehabilitation robot   common spatial pattern
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号