首页 | 本学科首页   官方微博 | 高级检索  
     

基于正交试验法的厢式货车气动减阻优化
引用本文:许建民,范健明. 基于正交试验法的厢式货车气动减阻优化[J]. 重庆大学学报(自然科学版), 2020, 43(3): 12-26
作者姓名:许建民  范健明
作者单位:厦门理工学院 机械与汽车工程学院, 福建 厦门 361024;福建省客车及特种车辆研发协同创新中心, 福建 厦门 361024,厦门理工学院 机械与汽车工程学院, 福建 厦门 361024
基金项目:福建省科技创新平台项目(2016H2003);福建省中青年教师教育科研项目(科技)(JT180445)。
摘    要:为了优化某厢式货车的气动阻力系数,设计了驾驶室前部仿生减阻结构、顶部和侧部涡流发生器、底部涡流发生器等3种气动减阻装置。研究了3种单一气动减阻装置主要相关参数对气动阻力的影响,分别从货车外流场的速度轨迹、压力分布和湍动能分布等3方面详细分析了各单一气动减阻装置的减阻效果。在此基础上采用正交试验法对3种气动减阻装置的主要参数进行优化,获得最优减阻货车模型。研究表明:驾驶室前部突出部分的长度对货车整车气动阻力系数的影响比倾角更大;最优货车头部形状的倾角和长度分别为135°和300 mm,该模型的气动阻力系数为0.721 4,相对于货车原始模型的减阻率为8.93%;涡流发生器的高度和位置对货车的减阻效果均有较大的影响;涡流发生器可以增加货车尾部分离区流场的能量,使得尾涡区减小,气动压差阻力减小;3种气动减阻装置对货车气动阻力系数的影响大小依次为:底部涡流发生器、货车前部仿生减阻结构、顶部和侧部涡流发生器,其最优厢式货车模型的空气阻力系数为0.683 3,其复合减阻装置的最佳减阻率为13.8%。

关 键 词:厢式货车  仿生减阻结构  涡流发生器  正交试验法  复合减阻
收稿时间:2019-10-05

Optimization of pneumatic drag reduction of van type truck based on orthogonal test method
XU Jianmin and FAN Jianming. Optimization of pneumatic drag reduction of van type truck based on orthogonal test method[J]. Journal of Chongqing University(Natural Science Edition), 2020, 43(3): 12-26
Authors:XU Jianmin and FAN Jianming
Affiliation:School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, Fujian, P. R. China;Fujian Collaborative Innovation Center for R&D of Coach and Special Vehicle, Xiamen 361024, Fujian, P. R. China and School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, Fujian, P. R. China
Abstract:In order to optimize the aerodynamic drag coefficient of a van type truck, three kinds of pneumatic drag reducing devices such as the bionic drag reduction structure of the front part of the cab, the top and side vortex generators, and the bottom vortex generator are designed. The effects of main parameters of three kinds of single pneumatic drag reducing devices on aerodynamic drag are studied. The drag reduction effect of each pneumatic drag reducing device is analyzed in detail from three aspects:speed trajectory, pressure distribution and turbulent kinetic energy distribution,on the basis of which, the main parameters of the three kinds of pneumatic drag reducing devices are optimized by orthogonal test method, and the truck model with optimal drag reduction is obtained. The research shows that the influence of the length of the front part of the cab on the aerodynamic drag coefficient of the truck is greater than that of the tilt angle. The inclination angle and length of the optimal truck head shape are 135ånd 300 mm, respectively. The aerodynamic drag coefficient of the model is 0.721 4, and the drag reduction rate is 8.93% compared with the original model of the truck. The height and position of the vortex generator have a great influence on the drag reduction effect of the truck. The vortex generator can increase the energy of the flow field in the separation area of the tail of the truck, and reduce the tail vortex area and the pneumatic differential pressure. The order of influence of the three kinds of pneumatic drag reducing devices on the aerodynamic drag coefficient of the truck is as follows:bottom vortex generator, the bionic drag reduction structure of the front part of the cab, and top and side vortex generators. The air drag coefficient of the optimal van type truck model is 0.683 3, and the optimal drag reduction rate of the composite drag reducing device is 13.8%.
Keywords:van type truck  bionic drag reduction structure  vortex generator  orthogonal test method  composite drag reduction
本文献已被 CNKI 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号