首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM和PSO的烧结工况预报方法
引用本文:姜慧研,景世磊,柴天佑,周晓杰. 基于SVM和PSO的烧结工况预报方法[J]. 东北大学学报(自然科学版), 2010, 31(4): 494-497. DOI: -
作者姓名:姜慧研  景世磊  柴天佑  周晓杰
作者单位:东北大学软件学院,辽宁,沈阳,110004;东北大学流程工业综合自动化教育部重点实验室,辽宁,沈阳,110004
基金项目:国家自然科学基金资助项目(60534010);;国家高技术研究发展计划项目(2007AA041404)
摘    要:利用滚球算法对在线采集的烧结工况图像进行去噪处理,然后利用大津方法和双快速行进法从去噪后的图像中分割出物料区、火焰区和充分燃烧区等关心区域,再从这些关心区域中提取特征.基于ReliefF-GA方法对特征进行约简,利用PSO优化SVM模型参数,建立烧结工况预报模型,基于该模型进行烧结工况预报.经过大量实验验证,该方法可以较大程度地提高烧结工况的预报率.

关 键 词:烧结工况  图像处理  模式识别  支持向量机  粒子群算法

Sintering Condition Prediction Based on SVM and PSO
JIANG Hui-yan,JING Shi-lei,CHAI Tian-you,ZHOU Xiao-jie. Sintering Condition Prediction Based on SVM and PSO[J]. Journal of Northeastern University(Natural Science), 2010, 31(4): 494-497. DOI: -
Authors:JIANG Hui-yan  JING Shi-lei  CHAI Tian-you  ZHOU Xiao-jie
Affiliation:1.School of Software;Northeastern University;Shenyang 110004;China;2.Key Laboratory of Integrated Automation of Process Industry;Ministry of Education;China.
Abstract:Sintering condition images that were collected online in rotary kiln were denoised by rolling-ball algorithm,then the ROI(regions of interest) such as the material,flame and full combustion zones in the denoised images were segmented by Otsu method and double fast marching method.With some features extracted from the ROI then reduced on the basis of the RelieF-GA method,the SVM model parameters were optimized via PSO algorithm to develop a model to predict the sintering conditions.Lots of experimental resul...
Keywords:sintering condition  image processing  pattern recognition  SVM(support vector machine)  PSO(particle swarm optimization)
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号