首页 | 本学科首页   官方微博 | 高级检索  
     

n维四次勾股数及n维五次勾股数的一般表达式
引用本文:关永刚,关春河. n维四次勾股数及n维五次勾股数的一般表达式[J]. 高师理科学刊, 2008, 28(5)
作者姓名:关永刚  关春河
作者单位:1. 清华大学,电机系,北京100084
2. 黑龙江省龙江县发达中学,黑龙江,龙江161102
摘    要:运用初等数学方法,推导出三维四次勾股数与四维四次勾股数的一般表达公式.并且推广为n(n≥3,n∈N+,N+为正整数集)维四次勾股数的一般表达公式.进而推导出n(n≥3,n∈N+,N+为正整数集)维五次勾股数的一般表达公式.

关 键 词:三维四次勾股数  四维四次勾股数  n维四次勾股数  n维五次勾股数

Universal formula of n-dimensional four-degree and five-degree pythagorean number
GUAN Yong-gang,GUAN Chun-he. Universal formula of n-dimensional four-degree and five-degree pythagorean number[J]. Journal of Science of Teachers'College and University, 2008, 28(5)
Authors:GUAN Yong-gang  GUAN Chun-he
Affiliation:GUAN Yong-gang1,GUAN Chun-he2(1.Department of Electrical Engineering,Tsinghua University,Beijing 100084,China,2.Fada Middle School,Longjiang 161102,China)
Abstract:The universal formula of n-dimensional four-degree pythagorean number has been extended out after the deduction of the universal formulas of three-dimensional four-degree pythagorean number and three-dimensional four-degree pythagorean number based on fundamental mathematics methods.Further more,deduced the universal formula of n-dimensional five-degree pythagorean number were deduced(n ≥ 3,n∈N +,N+is the positive integer sets).
Keywords:three-dimensional four-degree pythagorean number  four-dimensional four-degree pythagorean number  n-dimensional four-degree pythagorean number  n-dimensional five-degree pythagorean number  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号