摘 要: | 针对传统径向基神经网络(RBF)在微电网负荷预测上精度低的问题,采用具有全局搜索以及优化能力的蜻蜓算法(DA)对RBF神经网络进行优化。利用蜻蜓算法对RBF神经网络的中心向量、宽度向量以及隐含层和输出层之间的连接权值进行优化处理,构建出DA-RBF的微电网负荷预测模型。使用夹角余弦法对负荷数据进行夹角余弦的计算从而获得相似日,确定模型的训练集和测试集数据,以此来降低数据本身对模型精度的影响。然后将选择的数据放入模型中进行仿真实验,并选择平均百分比误差(MAPE)来衡量模型精度的高低,将预测结果同DA-BP、CEEMD-RSVPSO-KELM、CPSO-LSSVM及AMPSO-BP作比较,DA-RBF的MAPE均最低,由此证明了DA-RBF在微电网负荷预测上的可行性及优越性。
|