首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络逼近的磁浮列车动态悬浮控制
引用本文:王强. 基于神经网络逼近的磁浮列车动态悬浮控制[J]. 科学技术与工程, 2021, 21(28): 12117-12123
作者姓名:王强
作者单位:中国铁建电气化局集团第四工程有限公司, 长沙410007
基金项目:“十三五”国家重点研发计划先进轨道交通重点专项“高速磁浮关键技术研究”
摘    要:为了有效提高磁浮列车悬浮系统在负载扰动和轨道不平顺扰动下的动态特性,提出了一种基于Lyapunov稳定性分析的径向基神经网络逼近算法使悬浮间隙能够在有界范围内达到最优。首先,以悬浮负载为受控对象建立系统垂向动力学方程和电压控制方程,以此构造能够表征系统非线性的状态空间方程。其次,确定径向基函数(radial basis function, RBF)神经网络基本结构,根据悬浮间隙误差约束条件和控制电流构造输入输出,并以此设计控制律保证所输出悬浮间隙能够在多种扰动的综合作用下持续稳定;再次,基于Lyapunov稳定性第二判据证明系统闭环稳定,能够在误差整定过程中使得间隙误差收敛于无穷小。最后,通过与目前应用较为广泛的比例-积分-微分(proportion-integral-derivative, PID)控制算法进行仿真对比,在非线性负载力和不平顺扰动下分析验证所提出控制算法的有效性。结果表明:所提控制算法比PID控制算法具有更好的鲁棒性。

关 键 词:磁浮列车  径向基函数(RBF)神经网络  Lyapunov法  悬浮控制  误差整定
收稿时间:2021-01-28
修稿时间:2021-06-28

Research on dynamic levitation control of Maglev Train Based on neural network approximation
WANG Qiang. Research on dynamic levitation control of Maglev Train Based on neural network approximation[J]. Science Technology and Engineering, 2021, 21(28): 12117-12123
Authors:WANG Qiang
Affiliation:The th Engineering Co Ltd of China Railway Construction Electrification Bureau Group
Abstract:In order to effectively improve the dynamic characteristics of maglev train levitation system under load disturbance and track irregularity disturbance, a radial basis function neural network approximation algorithm based on Lyapunov stability analysis is proposed in this paper, so that the levitation gap can be optimized in a bounded range. Firstly, the vertical dynamic equation and voltage control equation were established by taking the suspended load as the controlled object, and the state space equations were constructed to represent the nonlinearity of the system. Secondly, the basic structure of RBF(Radial basis function) neural network was determined, and the input and output were constructed according to the suspension gap error constraints and control current. The control law was designed to ensure that the output suspension gap can be continuously stable under the combined action of various disturbances; Thirdly, based on the second Lyapunov stability criterion, the closed-loop stability of the system was proved, which can make the gap error converge to infinitesimal in the error tuning process. Finally, the effectiveness of the proposed control algorithm was verified by simulation comparison with PID(proportion- integral-derivative) control algorithm, which is widely used at present. The results show that the proposed control algorithm has better robustness than PID control algorithm
Keywords:maglev train   radial basis function neural network   Lyapunov method   levitation control   error tuning
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号