首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进的进化型自组织映射的攻击实例挖掘
引用本文:肖云,韩崇昭. 基于改进的进化型自组织映射的攻击实例挖掘[J]. 系统仿真学报, 2007, 19(15): 3485-3488,3493
作者姓名:肖云  韩崇昭
作者单位:1. 西北大学信息科学与技术学院,陕西,西安,710127
2. 西安交通大学电子与信息工程学院,陕西,西安,710049
基金项目:国家高技术研究发展计划(863计划);国家重点基础研究发展计划(973计划)
摘    要:针对从入侵检测系统产生的复杂报警数据中难以获取有意义的攻击实例的问题,提出了一种基于改进的进化型自组织映射(IESOM)的攻击实例挖掘方法。IESOM算法给出了基于获胜神经元和其它神经元的距离的连接强度初始值,解决了进化型自组织映射(ESOM)算法中的连接强度初始值的选择问题。基于IESOM的攻击实例挖掘方法先对报警数据进行IESOM聚类,再使用合并规则得到初步的攻击实例,最后使用筛选规则获取有意义的攻击实例。对XJTU-sensor的报警数据的攻击案例获取结果表明了提出的基于IESOM的攻击实例挖掘方法能够从大量的报警数据中高效地获取典型的攻击实例。

关 键 词:入侵报警  自组织映射  聚类  攻击实例
文章编号:1004-731X(2007)15-3485-04
收稿时间:2006-06-12
修稿时间:2006-06-122006-09-24

Mining Attack Instances Based on Improved Evolving Self-organizing Maps
XIAO Yun,HAN Chong-zhao. Mining Attack Instances Based on Improved Evolving Self-organizing Maps[J]. Journal of System Simulation, 2007, 19(15): 3485-3488,3493
Authors:XIAO Yun  HAN Chong-zhao
Abstract:To solve the problems of obtaining interesting attack instances from complicated alerts generated by intrusion detection system, an attack instances mining method based on improved evolving self-organizing maps (IESOM) was proposed. The initial connection strengths between the winning neure and other neures were defined on the basis of their distances in IESOM, which solve the problem of choosing the initial connection strengths in evolving self-organizing maps (ESOM). These alerts were firstly clustered using IESOM, and these clustering results were merged with the merging rule to obtain initial attack instances in attack instances mining method based on IESOM, then these significative attack instances were obtained after filtering those initial attack instances according to a few of filtering rules. The attack instances mining results on the alerts raised by XJTU-sensor show that the proposed method is effective to obtain attack instances from plentiful alerts.
Keywords:intrusion alert   self-organizing map   clustering   attack instance
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号