首页 | 本学科首页   官方微博 | 高级检索  
     

用无限阶矩阵求微分方程在奇点处的级数解
引用本文:李大林,吕显瑞. 用无限阶矩阵求微分方程在奇点处的级数解[J]. 吉林大学学报(理学版), 2007, 45(2): 203-207
作者姓名:李大林  吕显瑞
作者单位:吉林大学,数学研究所,长春,130012;柳州职业技术学院,基础部,广西壮族自治区,柳州,545006;吉林大学,数学研究所,长春,130012
基金项目:高等学校博士学科点专项科研项目
摘    要:应用线性微分算子在幂基下的无限阶矩阵, 研究线性微分方程在奇点处的级数解. 得到一个计算无限阶矩阵属于零的特征向量的递推公式, 进而用这些特征向量表示级数解. 给出用有限阶矩阵判断奇点正则性的方法, 并改进了Fuchs定理.

关 键 词:常微分方程  无限阶矩阵  特征向量  级数解  正则奇点
文章编号:1671-5489(2007)02-0203-05
收稿时间:2006-06-26
修稿时间:2006-06-26

Series Solutions of Linear Ordinary Differential Equation at Singular Point by Infinite Order Matrix
LI Da-lin,L Xian-rui. Series Solutions of Linear Ordinary Differential Equation at Singular Point by Infinite Order Matrix[J]. Journal of Jilin University: Sci Ed, 2007, 45(2): 203-207
Authors:LI Da-lin  L Xian-rui
Affiliation:1. Institute of Mathematics, Jilin University, Changchun 130012, China; 2. Department of Foundation,Liuzhou Vocational Institute of Technology, Liuzhou 545006, Guangxi Zhuang Autonomous Region, China
Abstract:The series solutions of the linear ordinary differential equation at singular point were studied via the infinite order matrix of the linear differential operator in power series basis. We got a recurrence formula to compute the characteristic vectors of the infinite order matrix belonging to λ=0 and then completed the expression of the series solutions with the characteristic vectors. The regularity of singular point is judged with a finite order matrix, and the Fuchs theorem has been improved.
Keywords:ordinary differential equation  infinite order matrix  characteristic vector  series solution  regular singular point
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号