首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法优化的BP神经网络的PEMFC动态特性仿真研究
引用本文:简弃非,吴昊. 基于遗传算法优化的BP神经网络的PEMFC动态特性仿真研究[J]. 江西师范大学学报(自然科学版), 2015, 0(3): 221-229
作者姓名:简弃非  吴昊
作者单位:华南理工大学机械与汽车工程学院,广东 广州 510640
基金项目:国家自然科学基金(50930005);广东省工程研究技术中心建设(2012B070800008)资助项目
摘    要:针对一辆小型燃料电池电动车的2 kW质子交换膜燃料电池(PEMFC)动力系统,利用遗传算法优化的BP神经网络建立其电压输出特性模型,将PEMFC部分实测数据作为遗传算法优化的BP神经网络的训练样本对其进行训练,利用训练好的神经网络对电堆电压输出特性进行预测,并与实验数据进行对比,结果显示:网络预测的输出电压与实测输出电压之间的最大相对误差均保持在4;之内.

关 键 词:质子交换膜燃料电池  遗传算法  BP神经网络  电压输出模型

The Simulation Study on Dynamic Characteristics of PEMFC Based on BP Neural Network Optimized by Genetic Algorithm
JIAN Qifei , WU Hao. The Simulation Study on Dynamic Characteristics of PEMFC Based on BP Neural Network Optimized by Genetic Algorithm[J]. Journal of Jiangxi Normal University (Natural Sciences Edition), 2015, 0(3): 221-229
Authors:JIAN Qifei    WU Hao
Affiliation:JIAN Qifei;WU Hao;College of Mechanical & Automobile Engineering,South China University of Technology;
Abstract:For a 2 kW PEMFC stack power system of a lightweight electric vehicle,using BP neural network which have be optimized by genetic algorithm,the model of the characteristic of voltage output of the stack is established,and part of the measured data of the PEMFC is taken as the training samples of the BP neural network that be optimized by genetic algorithm to train the network.Then using the trained neural network model,the output voltage of the system is predicted and compared with the test data.The result show that the maximum relative errors between the network predicted voltage and the measured output voltage are keep in 4;.
Keywords:PEMFC  genetic algorithm  BP neural network  model of voltage output
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《江西师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《江西师范大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号