首页 | 本学科首页   官方微博 | 高级检索  
     

矩阵方程AX=B的循环解及其最佳逼近
引用本文:张湘林,李云翔. 矩阵方程AX=B的循环解及其最佳逼近[J]. 衡阳师专学报, 2011, 0(6): 29-32
作者姓名:张湘林  李云翔
作者单位:湖南城市学院数学与计算科学系,湖南益阳413000
基金项目:基金项目:湖南省教育厅资助项目(10C0501)
摘    要:文章首先考虑了如下问题:给定矩阵A,B∈Cn×m,求循环矩阵X∈CIRn×n,使得min||AX—B||。给X出了问题具有循环矩阵解的条件和解的一般表达式,若用SE表示上述问题解的集合,文章还考虑了最佳逼近问题:给定X*∈CIRn×n,求X∈SE,使得minX∈SE||X-X*||=||X-X*||,其中||·||表示矩阵的Frobenius范XESE数,证明了问题存在唯一解,给出了其唯一解的一般表达式。

关 键 词:矩阵方程  循环矩阵  矩阵范数  最佳逼近矩阵

Circulant Solution of Matrix Equation AX=B and its Optimal Approximation
ZHANG Xiang-lin,LI Yun-xiang. Circulant Solution of Matrix Equation AX=B and its Optimal Approximation[J]. Journal of Hengyang Normal University, 2011, 0(6): 29-32
Authors:ZHANG Xiang-lin  LI Yun-xiang
Affiliation:(Department of Mathematics and Computing Science, Hunan City University, Yiyang Hunan 413000, China)
Abstract:In this paper, we first coneider the problelm as follow:Find a circulant matrix X∈CIRn×n such that for given matrics A,X∈Cn×m we have min || AX - B ||The existence theorems are obtained,and a general representation of such a matrix is presented. We denote the set of such ma- trices by SE. Then the matrix approximation problem is discussed. That is: Find a matrixX∈ SE such that for a given X∈ CIRn×n X∈CIRn×nwe have minX∈SE||X-X*||=||X-X*|| Where ||·|| is the Frobenius norm of matrics. We show that the approximation matrix is unique and provide an expression for thisapproximation matrix.
Keywords:matrix equation  circulant matrix  matrix norm  the approximation matrix
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号