首页 | 本学科首页   官方微博 | 高级检索  
     

基于多特征融合的运动目标识别
引用本文:郑林,韩崇昭,左东广,王永昌. 基于多特征融合的运动目标识别[J]. 系统仿真学报, 2004, 16(5): 1081-1084
作者姓名:郑林  韩崇昭  左东广  王永昌
作者单位:1. 武汉理工大学信息工程学院,武汉,430070
2. 西安交通大学电信学院,西安,710049
基金项目:国家973项目(2001CB309403)
摘    要:本文基于多特征融合,提出了一种运动目标识别方法。首先通过对运动目标的分割,分析得到各个目标的面积大小、形状复杂度;然后运用模板匹配方法,求得目标的运动速度。对上述特征进行模糊建模,提出相应的模糊规则,并采用模糊神经网络对推理系统的各个参数进行优化,进而识别目标。把这种识别系统用于对道路的监控,从而有效地识别道路中的机动车辆、行人以及摩托车/自行车。仿真试验表明,这种系统具有较强的学习能力以及识别精度。

关 键 词:多特征融合  模糊推理  神经网络  识别
文章编号:1004-731X(2004)05-1081-04
修稿时间:2003-03-10

Moving Object Recognition Based on Multi-feature Fusion
ZHENG Lin,Han Chong-zhao,Zuo Dong-guang,Wang Yong-chang. Moving Object Recognition Based on Multi-feature Fusion[J]. Journal of System Simulation, 2004, 16(5): 1081-1084
Authors:ZHENG Lin  Han Chong-zhao  Zuo Dong-guang  Wang Yong-chang
Affiliation:ZHENG Lin1,Han Chong-zhao2,Zuo Dong-guang2,Wang Yong-chang2
Abstract:A moving target recognition method is proposed in this paper, which is based on multi-features fusion. Firstly, all moving objects are segmented out, so the area and the degree of shape complex can be gotten for every object. By using matching method, the velocity of every target can be determined. A fuzzy reasoning system is then established, in which above characters are fuzzed. A fuzzy-neural network is used to optimize those parameters of fuzzy system, and then these moving objects are classified correctly. This system is used for road surveillance to distinguish motorcar, walking man, motorcycle /bicycle accurately. The experiences show that this system has a good adaptive ability and high accuracy.
Keywords:multi-feature fusion  fuzzy inference  neural network  recognition  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号