首页 | 本学科首页   官方微博 | 高级检索  
     

注意力机制CNN的毫米波大规模MIMO系统信道估计算法
引用本文:刘紫燕,马珊珊,梁静,朱明成,袁磊. 注意力机制CNN的毫米波大规模MIMO系统信道估计算法[J]. 系统工程与电子技术, 2022, 44(1): 307-312. DOI: 10.12305/j.issn.1001-506X.2022.01.38
作者姓名:刘紫燕  马珊珊  梁静  朱明成  袁磊
作者单位:贵州大学大数据与信息工程学院, 贵州 贵阳 550025
基金项目:贵州省科学技术基金(黔科合基础[2016]1054);贵州省联合资金(黔科合LH字[2017]7226);贵州大学2017年度学术新苗培养及创新探索专项(黔科合平台人才[2017]5788);贵州省科技计划(黔科合SY字[2011]3111)资助课题。
摘    要:在室外光线追踪通信场景下,针对毫米波大规模多输入多输出(multiple input multiple output,MI-MO)信道具有稀疏特性、系统受噪声因素影响导致信道估计精度低的问题,提出一种基于图像去噪的注意力机制卷积神经网络信道估计方法.首先,设定参数产生模拟真实环境的数据集,将所产生的信道矩阵看作二维图像...

关 键 词:毫米波大规模多输入多输出  信道估计  卷积神经网络  注意力机制  去噪
收稿时间:2020-12-31

Attention mechanism based CNN channel estimation algorithm in millimeter-wave massive MIMO system
LIU Ziyan,MA Shanshan,LIANG Jing,ZHU Mingcheng,YUAN Lei. Attention mechanism based CNN channel estimation algorithm in millimeter-wave massive MIMO system[J]. System Engineering and Electronics, 2022, 44(1): 307-312. DOI: 10.12305/j.issn.1001-506X.2022.01.38
Authors:LIU Ziyan  MA Shanshan  LIANG Jing  ZHU Mingcheng  YUAN Lei
Affiliation:College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
Abstract:In outdoor ray tracing communication scenarios, aiming at the problems of low channel estimation accuracy defected by its sparse characteristics and noise factors in millimeter-wave massive multiple input multiple output (MIMO), an image denoising attention mechanism based convolutional neural network channel estimation algorithm is proposed. Firstly, after constructing the data set for simulating the real environment by setting the parameters, generate channel matrix is regarded as a two-dimensional image. Then, the attention mechanism network is constructed to enhance the saliency of the noise features in the image, and the attention mechanism network is embedded in the convolutional neural network (CNN) for feature fusion. Finally, the noise extracted by the network model achieves the denoising effect and the denoised image, the estimated channel matrix is obtained. The simulation results demonstrate that the proposed attention mechanism based CNN (Attention-CNN) algorithm achieves better performance of higher channel estimation accuracy, which improved by about 1.86 dB on average, compared with least square (LS), minimum mean square error (MMSE), CNN and denoising convolutional neural network (DnCNN).
Keywords:millimeter-wave massive multiple input multiple output(MIMO)  channel estimation  convolutional neural network(CNN)  attention mechanism  denoising
本文献已被 维普 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号