首页 | 本学科首页   官方微博 | 高级检索  
     

E‐MS算法的收敛性
引用本文:徐平峰,陈婷,尚来旭. E‐MS算法的收敛性[J]. 吉林大学学报(理学版), 2019, 57(5): 1127-1130
作者姓名:徐平峰  陈婷  尚来旭
作者单位:长春工业大学数学与统计学院,长春,130012;长春工业大学数学与统计学院,长春,130012;长春工业大学数学与统计学院,长春,130012
基金项目:国家自然科学基金;国家自然科学基金;国家自然科学基金;吉林省教育厅科研项目
摘    要:考虑E MS算法的收敛性. 首先, 给出观测广义信息准则(GIC)最小值点的必要条件; 其次, 在模型空间有限性、 参数空间紧性、 Q函数连续性的条件下, 证明E MS算法产生序列的极限点满足观测GIC最小值点的必要性, 是对E MS算法全局收敛性的补充; 再次, 给出满足该必要条件但不满足全局收敛条件高斯图模型的一个实例; 最后, 证明E MS算法的全局收敛性.

关 键 词:缺失数据  模型选择  观测GIC  E-M S算法
收稿时间:2018-10-22

Convergence of E-MS Algorithm
XU Pingfeng,CHEN Ting,SHANG Laixu. Convergence of E-MS Algorithm[J]. Journal of Jilin University: Sci Ed, 2019, 57(5): 1127-1130
Authors:XU Pingfeng  CHEN Ting  SHANG Laixu
Affiliation:School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China
Abstract:We considered the convergence of E MS algorithm. Firstly, we gave a necessary condition for the minimum point of observed generalized information criterion (GIC). Secondly, under the conditions of finiteness of model space, compactness of parameter space, continuity of Q function, we proved that it was necessary for the limit points of the sequence generated by E MS algorithm to satisfy the minimum points of observed GIC, which was a supplement to the global convergence of E MS algorithm. Thirdly, we gave an example of Gaussian graphical model which satisfied the necessary condition, but did not satisfy conditions for global convergence. Finally, we proved the global convergence of E-MS algorithm.
Keywords:missing data   model selection   observed GIC   E-MS algorithm  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号