首页 | 本学科首页   官方微博 | 高级检索  
     

带有治疗项的SIS反应扩散传染病模型动力学分析
引用本文:闫卫平,吴素赟. 带有治疗项的SIS反应扩散传染病模型动力学分析[J]. 河北科技大学学报, 2015, 36(6): 587-592
作者姓名:闫卫平  吴素赟
作者单位:;1.山西大学数学科学学院
基金项目:国家自然科学基金(11301490)
摘    要:考虑了一类带有饱和治疗项的SIS反应扩散传染病模型。根据最小特征值得到疾病流行阈值——基本再生数,当基本再生数R01时,疾病的无病平衡点局部稳定;当R01时,无病平衡点不稳定且存在地方病平衡点。通过数值模拟,讨论了治疗项对疾病传播的影响。当疾病流行时,加强治愈率可以有效控制疾病的发展,然而扩大医院规模会促使疾病更大规模的流行。

关 键 词:微分动力系统  SIS反应扩散传染病模型  治疗项  基本再生数  无病平衡点  地方病平衡点
收稿时间:2015-08-01
修稿时间:2015-09-26

A dynamics analysis of an SIS epidemic reaction-diffusion model with treatment
YAN Weiping and WU Suyun. A dynamics analysis of an SIS epidemic reaction-diffusion model with treatment[J]. Journal of Hebei University of Science and Technology, 2015, 36(6): 587-592
Authors:YAN Weiping and WU Suyun
Abstract:In this paper, we study the SIS epidemic reaction-diffusion model with the saturated treatment. We obtain the prevalence threshold value of disease, namely the basic reproduction number R0, based on the least eigenvalue. We have proved that the unique disease-free equilibrium is local stable when R0<1, while the disease-free equilibrium is unstable and the endemic equilibrium exists when R0>1. Through numerical simulation, we discuss the influence of treatment on prevalence of disease. When disease outbreaks, it is efficient to increase cure rate for the control of the disease, while expanding the scale of hospitals will cause even more prevalence of the disease.
Keywords:differential dynamic system   SIS epidemic reaction-diffusion model   treatment   basic reproduction number   disease-free equilibrium   endemic equilibrium
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《河北科技大学学报》浏览原始摘要信息
点击此处可从《河北科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号