首页 | 本学科首页   官方微博 | 高级检索  
     

基于Maxwell-Stefan双扩散模型的煤层气注气数值模拟
引用本文:孙晓飞,张艳玉,李凯,李志涛,尚凡杰,孙仁远. 基于Maxwell-Stefan双扩散模型的煤层气注气数值模拟[J]. 中国石油大学学报(自然科学版), 2016, 40(3): 113-120
作者姓名:孙晓飞  张艳玉  李凯  李志涛  尚凡杰  孙仁远
作者单位:中国石油大学石油工程学院,山东青岛 266580;中国石油大学地球科学与技术学院,山东青岛 266580,中国石油大学石油工程学院,山东青岛 266580,中国石油新疆油田分公司实验检测研究院,新疆克拉玛依 834000,中国石油大学石油工程学院,山东青岛 266580,中海油研究总院开发研究院,北京 100027,中国石油大学石油工程学院,山东青岛 266580
基金项目:国家科技重大专项(2009ZX05042-003);中国博士后科学基金面上项目(2015M582168);山东省自然科学基金项目(ZR2011EL034)
摘    要:目前煤层气注气数值模拟软件中均以扩展Langmuir模型模拟多组分气体吸附/解吸,以拟稳态单孔扩散模型和Fick定律描述煤层基质中气体扩散,虽然简单,便于应用,但存在较大局限性。以试验数据为依据,评价扩展Langmuir、IAS和2D PR-EOS多组分气体吸附模型可靠性,并建立Maxwell-Stefan双扩散模型模拟气体扩散过程。最后,将双扩散模型与煤储层气水两相多组分渗流模型耦合,利用IMPES方法求解研究煤层气注气过程。研究表明:2D PR-EOS模型预测结果优于扩展Langmuir和IAS模型;注气初期基质中多组分气体吸附和甲烷解吸速率较快,之后逐渐变缓;该模拟方法可以较为准确地模拟煤层气衰竭和注气开发过程,预测煤基质中气体各组分浓度分布,为煤层气注气开发的研究及现场应用提供有效的技术手段。

关 键 词:煤层气   注气   多组分吸附   双扩散模型   Maxwell-Stefan方程
收稿时间:2015-09-25

Numerical simulation of gas injection enhanced coalbed methane recovery based on bi-dispersing diffusion model with Maxwell-Stefan equation
SUN Xiaofei,ZHANG Yanyu,LI Kai,LI Zhitao,SHANG Fanjie and SUN Renyuan. Numerical simulation of gas injection enhanced coalbed methane recovery based on bi-dispersing diffusion model with Maxwell-Stefan equation[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2016, 40(3): 113-120
Authors:SUN Xiaofei  ZHANG Yanyu  LI Kai  LI Zhitao  SHANG Fanjie  SUN Renyuan
Affiliation:School of Petroleum Engineering in China University of Petroleum, Qingdao 266580, China;School of Geosciences in China University of Petroleum, Qingdao 266580, China,School of Petroleum Engineering in China University of Petroleum, Qingdao 266580, China,Institute of Experiment and Analysis, PetroChina Xinjiang Oilfield Company, Karamay 834000, China,School of Petroleum Engineering in China University of Petroleum, Qingdao 266580, China,Development Research Department, CNOOC Research Institute, Beijing 100027, China and School of Petroleum Engineering in China University of Petroleum, Qingdao 266580, China
Abstract:In most commercial coalbed methane simulation software, an extended Langmuir model, quasi-steady single pore diffusion and Fick ''s law are currently used to describe the adsorption of mixed gases on coal rocks and gas diffusion process. Although these methods are simple and easy for application, there are also some limitations. In this paper, the effectiveness of the extended Langmuir, IAS and 2D PR-EOS models for the prediction of the gas adsorption process on coal was analyzed with experimental data in order to establish a better model for the simulation. Then, the Maxwell-Stefan equation was used to develop a bi-dispersing diffusion model, in which the 2D PR-EOS model was used to predict multi-component gas adsorption. Finally, the bi-dispersing diffusion model was coupled with a gas/water two-phase multi-component simulation model, and the IMPES method was used to solve the equations. The simulation results of gas injection for enhanced coalbed methane recovery using CO2 and N2 show that the 2D PR-EOS model is better than the extended Langmuir and IAS models, which can reflect the relative adsorption of multi-component gases. The adsorption and desorption rates of gases are faster in the early stage of the gas injection, then gradually become slow, and the adsorption rate of CO2 is significantly higher than that of N2. This numerical simulation method can effectively simulate the gas injection process for enhanced methane recovery, and accurately predict the distribution of different gas components in the coal matrix.
Keywords:coalbed methane   gas injection   multi-component adsorption equilibrium   bi-dispersing diffusion model   Maxwell-Stefan equation
本文献已被 CNKI 等数据库收录!
点击此处可从《中国石油大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《中国石油大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号