首页 | 本学科首页   官方微博 | 高级检索  
     

两层模糊神经网络交通信号控制模型
引用本文:毛红阁,刘长旺,刘香伟,刘伟. 两层模糊神经网络交通信号控制模型[J]. 西安科技大学学报, 2012, 32(5): 662-666
作者姓名:毛红阁  刘长旺  刘香伟  刘伟
作者单位:1. 南阳师范学院软件学院,河南南阳,473061
2. 中国人民解放军外国语学院基础部,河南洛阳,471003
3. 中国人民解放军93422部队,北京延庆,102100
基金项目:河南省基础与前沿技术研究计划项目(112102310517)
摘    要:交叉路口信号的有效控制是减少车辆延误时间的关键,是保证城市交通顺畅的前提。以单交叉路口为研究对象,在仿真希腊学者Pappis提出的模糊控制方法基础之上,基于交叉路口的动态特性及模糊规则的一成不变,提出两层BP神经网络实现单交叉路口的模糊信号控制方法,在不同车流量情况下,使用MATLAB工具仿真实现,结果表明:所提出的模糊神经网络具有较强的学习、推理能力,对于车辆的平均延误时间有较好的改进。

关 键 词:神经网络  模糊控制  交叉路口

A signal control model based on two- layer signal fuzzy neural network
MAO Hong-ge , LIU Chang-wang , LIU Xiang-wei , LIU Wei. A signal control model based on two- layer signal fuzzy neural network[J]. JOurnal of XI’an University of Science and Technology, 2012, 32(5): 662-666
Authors:MAO Hong-ge    LIU Chang-wang    LIU Xiang-wei    LIU Wei
Affiliation:1. School of Software, Nanyang Normal University,Nanyang 473061, China; 2. Dept. of Basic Courses ,PLA University of Foreign Languages, Luoyang 471003, China ;3. 93422 Corps of the PLA , Yanqing , 102100, China)
Abstract:The effectively controlled signal is a key to decrease the vehicl smooth traffic. This paper, taking a single intersection as research object, e delay time and it ensures through the simulation of the fuzzy signal control method proposed by Greece scholar, puts forward a two-layer BP neural network by MATLAB on different traffic flows. The result of the simulation shows that the fuzzy neural network with ability of strong learning and reasoning can improve the vehicle average delay time.
Keywords:neural network  fuzzy control  single intersection
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号