首页 | 本学科首页   官方微博 | 高级检索  
     

基于SMC-RS-LSSVM的电子商务客户流失预测模型
引用本文:朱帮助. 基于SMC-RS-LSSVM的电子商务客户流失预测模型[J]. 系统工程理论与实践, 2010, 30(11): 1960-1967. DOI: 10.12011/1000-6788(2010)11-1960
作者姓名:朱帮助
作者单位:1. 五邑大学 经济管理学院, 江门 529020;2. 北京理工大学 管理与经济学院,北京 100081
基金项目:国家自然科学基金,国家博士后科学基金,广东省自然科学基金
摘    要:为提高个体层次上客户流失预测的精度,建立了基于SMC-粗糙集-最小二乘支持向量机的电子商务客户流失预测模型.该模型首先利用SMC模型计算出客户活跃度,以0.5为阈值判断出客户流失状态,识别出正判客户和错判客户;其次应用粗糙集理论约简出重要的客户流失预测指标体系,然后将训练样本送入最小二乘支持向量机进行学习和训练,进而对测试样本的客户流失状态进行判别.利用某网上商场的2525名客户样本进行电子商务客户流失预测实证研究,结果表明:与SMC模型、BP神经网络模型、最小二乘支持向量机模型相比,该模型对测试样本预测精度更高,是一种更为有效和实用的客户流失预测方法.

关 键 词:SMC  粗糙集  最小二乘支持向量机  客户流失预测  电子商务  
收稿时间:2009-12-04

E-business customer churn prediction based on integration of SMC, rough sets and least square support vector machine
ZHU Bang-zhu. E-business customer churn prediction based on integration of SMC, rough sets and least square support vector machine[J]. Systems Engineering —Theory & Practice, 2010, 30(11): 1960-1967. DOI: 10.12011/1000-6788(2010)11-1960
Authors:ZHU Bang-zhu
Affiliation:1. School of Economics and Management, Wuyi University, Jiangmen 529020, China;2. School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
Abstract:To improve individual customer churn prediction accuracy, integrated model of SMC, rough sets (RS) and least squares support vector machines (LSSVM), i.e., SMC-RS-LSSVM, for E-business customer churn prediction was proposed in this paper. Firstly, customers' active probabilities were obtained by using SMC model to identify customer churn status with the threshold of 0.5. The training and testing samples were formed by the correctly identified customers and incorrectly identified customers respectively. Then the attributes were reduced using rough sets and LSSVM was trained with training samples. Lastly, the trained LSSVM model was used to identify customer churn status of testing samples. Taking 2525 customers in an E-shop as samples, empirical results show that, compared with SMC, BP neural network and LSSVM models, integration model of SMC-RS-LSSVM is an efficient and practical tool for E-business customer churn prediction of testing samples.
Keywords:SMC  rough sets  least squares support vector machines  customer churn prediction  E-business  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号