首页 | 本学科首页   官方微博 | 高级检索  
     

解旅行商问题的混沌蚁群算法
引用本文:高尚. 解旅行商问题的混沌蚁群算法[J]. 系统工程理论与实践, 2005, 25(9): 100-104. DOI: 10.12011/1000-6788(2005)9-100
作者姓名:高尚
作者单位:江苏科技大学电子信息学院,江苏,镇江,212003
摘    要:利用混沌运动的遍历性、随机性和规律性等特点,提出了一种求解旅行商问题的混沌蚁群(CACO)算法.该算法的思想是采用混沌初始化进行改善个体质量和利用混沌扰动避免搜索过程陷入局部极值.与模拟退火算法、标准遗传算法进行比较,仿真结果表明该方法是一种简单有效的算法.

关 键 词:蚁群算法  混沌  混沌扰动  混沌蚁群算法  旅行商问题
文章编号:1000-6788(2005)09-0100-05
修稿时间:2004-09-16

Solving Traveling Salesman Problem by Chaos Ant Colony Optimization Algorithm
GAO Shang. Solving Traveling Salesman Problem by Chaos Ant Colony Optimization Algorithm[J]. Systems Engineering —Theory & Practice, 2005, 25(9): 100-104. DOI: 10.12011/1000-6788(2005)9-100
Authors:GAO Shang
Abstract:By use of the properties of ergodicity, randomicity, and regularity of chaos, a chaos ant colony optimization (CACO) algorithm is proposed to solve traveling salesman problem. The basic principle of CPSO algorithm is that chaos initialization is adopted to improve individual quality and chaos perturbation is utilized to avoid the search being trapped in local optimum. Compared with the standard GA and simulated annealing algorithm ,simulation results show that chaos ant colony optimization is a simple and effective algorithm.
Keywords:ant colony algorithm  chaos  chaos perturbation   chaos ant colony optimization algorithm   traveling salesman problem
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号