首页 | 本学科首页   官方微博 | 高级检索  
     

A Class of Parallel Implicit Runge-Kutta Formulas
引用本文:Fei JinggaoBeijing Institute of Computer Application and Simulation Technology P.O. Box 3929,Beijing 100854,China. A Class of Parallel Implicit Runge-Kutta Formulas[J]. 系统工程与电子技术(英文版), 1993, 0(4)
作者姓名:Fei JinggaoBeijing Institute of Computer Application and Simulation Technology P.O. Box 3929  Beijing 100854  China
作者单位:Fei JinggaoBeijing Institute of Computer Application and Simulation Technology P.O. Box 3929,Beijing 100854,China
基金项目:Project supported by the National Natural Science Foundation of China
摘    要:A class of parallel implicit Runge-Kutta formulas is constructed for multiprocessor system. A family of parallel implicit two-stage fourth order Runge-Kutta formulas is given. For these formulas, the convergence is proved and the stability analysis is given. The numerical examples demonstrate that these formulas can solve an extensive class of initial value problems for the ordinary differential equations.


A Class of Parallel Implicit Runge-Kutta Formulas
Fei JinggaoBeijing Institute of Computer Application and Simulation Technology P.O. Box ,Beijing ,China. A Class of Parallel Implicit Runge-Kutta Formulas[J]. Journal of Systems Engineering and Electronics, 1993, 0(4)
Authors:Fei JinggaoBeijing Institute of Computer Application  Simulation Technology P.O. Box   Beijing   China
Affiliation:Fei JinggaoBeijing Institute of Computer Application and Simulation Technology P.O. Box 3929,Beijing 100854,China
Abstract:A class of parallel implicit Runge-Kutta formulas is constructed for multiprocessor system. A family of parallel implicit two-stage fourth order Runge-Kutta formulas is given. For these formulas, the convergence is proved and the stability analysis is given. The numerical examples demonstrate that these formulas can solve an extensive class of initial value problems for the ordinary differential equations.
Keywords:Multiprocessor system   Parallel algorithm   Ordinary differential equation   Implicit Runge-Kutta formula.
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号