首页 | 本学科首页   官方微博 | 高级检索  
     

稀疏化的压缩传感超声图像重构特性研究
引用本文:郭建中,秦晓伟. 稀疏化的压缩传感超声图像重构特性研究[J]. 中国科学:技术科学, 2012, 0(6): 743-753
作者姓名:郭建中  秦晓伟
作者单位:陕西师范大学物理学与信息技术学院,陕西省超声学重点实验室
基金项目:国家自然科学基金(批准号:10974128)资助项目
摘    要:传统医学超声成像射频信息存储数据量大,传输耗时且成本高.基于稀疏化的压缩传感技术,研究超声图像的稀疏特性,利用离散余弦变换(DCT)对原始超声图像进行稀疏变换,在稀疏域内进行压缩采样获得降采样数据,然后通过求解L1范数重构原始图像.理论和实验表明,该方法可以很好地应用到超声图像的重构中,且随着稀疏度的减小和测量值的增加,重构图像的峰值信噪比(PSNR值)增加,重构图像的视觉效果较好.

关 键 词:超声成像  图像重构  冗余  超声波应用  图像处理

The performance of reconstruction ultrasound imaging based on compressed sensing by sparsity
GUO JianZhong , QIN XiaoWei. The performance of reconstruction ultrasound imaging based on compressed sensing by sparsity[J]. Scientia Sinica Techologica, 2012, 0(6): 743-753
Authors:GUO JianZhong & QIN XiaoWei
Affiliation:GUO JianZhong & QIN XiaoWei College of Physics &Information Technology, Shaanxi Normal University, Xi’an 710062, China
Abstract:The traditional ultrasound imaging has a large amount of data, and its process would take a long time. We reconstructed the ultrasound imaging based on the compressed sensing method by the sparsity, and studied the sparsity performance of the reconstruction ultrasound image. The original image was transformed by the discrete cosine transform (DCT), then the sampling frequency data was obtained by compressed sampling on the sparsity domain, and finally, we reconstructed the original image by solving L-1 norm. The theories and experimental results show that the method in the paper could be used in reconstruction of ultrasound images, and its peak signal to noise ratio (PSNR) value of the reconstruction image increases as the sparsity decreases and the measurements value increases.
Keywords:ultrasonic imaging  image reconstruction  redundancy  ultrasonic applications  image processing
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号