首页 | 本学科首页   官方微博 | 高级检索  
     

基于密度的不确定数据流聚类算法
摘    要:不确定性的出现使传统算法无法直接用于聚类不确定数据流。该文提出一种不确定数据流环境下基于密度的聚类算法,其中提出不确定度的概念以衡量不确定数据的分布信息,并在改进面向确定数据的聚类算法DENCLUE的基础上,提出一种可处理数据不确定度的UDENCLUE算法,以降低数据的不确定性对聚类结果产生的影响;提出滑动窗口下基于密度的不确定数据流聚类算法USDENCLUE,通过聚类特征指数直方图技术实现快速剪枝,可以高效处理噪音数据、演化数据流并生成任意形状的簇;采用真实数据集及人工合成数据集对USDENCLUE与CluStream聚类算法进行比较,实验结果表明了所提出算法的高效性和有效性。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号