首页 | 本学科首页   官方微博 | 高级检索  
     

延迟微分方程并行算法的收敛定理
引用本文:丁效华,耿党辉. 延迟微分方程并行算法的收敛定理[J]. 黑龙江大学自然科学学报, 2004, 21(1): 17-22
作者姓名:丁效华  耿党辉
作者单位:哈尔滨工业大学,威海,数学系,山东,威海,264209;哈尔滨工业大学,威海,数学系,山东,威海,264209
基金项目:Supposed by the National Science Foundation of China(10271036),Grant of HIT(Weihai)(2003-3-14,15)
摘    要:用Runge-Kutta法求解微分方程,数值方法有高精度和强稳定性.用来求解Runge-Kutta方程的迭代法需要很大的计算量.一种选择是在t轴的步点上应用并行迭代法.针对延迟微分方程分析了一类特殊的并行迭代法的收敛性,数值算例表明这种算法是有效的.

关 键 词:Runge-Kutta法  步并行迭代  延迟微分方程

The convergence theorem of parallel Runge-Kutta methods for delay differential equation
Abstract. The convergence theorem of parallel Runge-Kutta methods for delay differential equation[J]. Journal of Natural Science of Heilongjiang University, 2004, 21(1): 17-22
Authors:Abstract
Abstract:Using implicit Runge -Kutta method to solve differential equations requires that the numerical scheme have high accuracy and high stability. But, the iterative scheme needed for solving the implicit RK equations requires a lot of computational effort. One option is the application of the iteration scheme concurrently at a number of step points on the t - axis. It is necessary to analyze the convergence of a special class of such step - parallel iteration methods for delay differential equations (DDEs).
Keywords:Runge-Kutta method  step - parallel iteration  delay differential equation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号