首页 | 本学科首页   官方微博 | 高级检索  
     

关于方程multiply from i=1 to k(x_i~(x_i))=Z~Z的奇数解
引用本文:姚兆栋. 关于方程multiply from i=1 to k(x_i~(x_i))=Z~Z的奇数解[J]. 湖北大学学报(自然科学版), 1988, 0(3)
作者姓名:姚兆栋
作者单位:湖北大学空军雷达学院
摘    要:柯召、孙琦在[2]中研究了方程multiply from i=1 to k (x_i~xi)=Z~z 当(x_1,x2,……x_k,z)>1时,对任意的k,方程(2)都有无穷多个整数解(偶数解)、对特殊的某些k,证明了方程(2)有奇数解。本文将证明当k>3,(k=4,5,……)的所有k,方程(2)都有奇数解,同时本文的定理3将给出方程(2)的新整数解(偶数解),不难看出,它包含了[2],[3]中得到的偶数解。

关 键 词:整数解  奇(偶)数解

ON THE ODD INTEGRAL SOLUTIONS OF THE EGUATION multiply from i=1 to k(x_i~(x_i))=Z~Z
Yao Zhaodong. ON THE ODD INTEGRAL SOLUTIONS OF THE EGUATION multiply from i=1 to k(x_i~(x_i))=Z~Z[J]. Journal of Hubei University(Natural Science Edition), 1988, 0(3)
Authors:Yao Zhaodong
Affiliation:The Institute of Air Force Radar
Abstract:Ke Zhao and Sun Qi studied the equationwhen k>3 and(x1,i,..., xk, Z)>1,They proved that the given equation has infinitely many even integral solutions for any integer k>3 and has odd integral solutions for some special integers KIn this paper,We shall prove that the given equation has odd integral solutions for all k>3 At the same time our theorem 3 will give a set of new even integral solutions which involves the even integral solutions given in [2]and[3]
Keywords:Integral solutisn   odd (even) integral solution.
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号