首页 | 本学科首页   官方微博 | 高级检索  
     

建立频繁项目集向量的极大频繁项目集挖掘
引用本文:周海岩. 建立频繁项目集向量的极大频繁项目集挖掘[J]. 系统工程与电子技术, 2009, 31(10): 2497-2500
作者姓名:周海岩
作者单位:淮阴工学院计算机工程系, 江苏, 淮安, 223003
基金项目:江苏省科技攻关项目(BE2006357)资助课题 
摘    要:在分析和研究诸多经典关联规则挖掘算法或最大频繁项目集挖掘算法的基础上,提出了一种新的极大频繁项目集挖掘算法BOFPV_MMFIA算法.该算法引入频繁项目集向量FP-V,将极大频繁项目集的挖掘过程转化为频繁项目集向量FP-V的与运算过程.算法只需扫描数据库一次,克服了Apriori及其相关算法产生大量候选集和需多次扫描数据库的缺点.又不同于BOM算法,挖掘频繁k_项目集时,需要进行 次k个向量的与运算.因此,BOFPV_MMFIA算法的效率明显高于Apriori、DMFIA及BOM算法.

关 键 词:数据挖掘  关联规则  极大频繁项目集  频繁项目集向量
收稿时间:2008-05-26
修稿时间:2008-10-29

Maximal frequent item set mining with establishment of frequent item set vectors
ZHOU Hai-yan. Maximal frequent item set mining with establishment of frequent item set vectors[J]. System Engineering and Electronics, 2009, 31(10): 2497-2500
Authors:ZHOU Hai-yan
Affiliation:Dept. of Computer Engineering, Huaiyin Inst. of Technology, Huai'an 223003, China
Abstract:After analyzing many typical association rule mining algorithms and the maximal frequent item set mining algorithm,a new algorithm of maximal frequent item set mining,named as BOFPV_MMFIA,is proposed.A frequent item set vector FP-V is introduced so as to convert the course of maximal frequent item set mining into the course of AND operation of the FP_V vector.The existing Apriori and its related algorithms produce a lot of candidacy sets and need scanning database many times,and the BOM algorithm entails the AND operation of k vectors with times.Overcoming these drawbacks,the proposed BOFPV_MFIA algorithm needs scanning database only once.Therefore,the proposed algorithm is obviously superior to Apriori and BOM algorithm in efficiency.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号