基于空间可信性聚类的图像分割算法 |
| |
摘 要: | 为解决噪声图像分割问题,提出了基于可信性测度并利用局部空间连续性的模糊聚类算法。采用可信性测度描述隶属度,去除了模糊c均值聚类中各像素对于所有类的隶属度之和为1的约束;并利用相异指标将局部空间信息引入聚类从而增强了抑制噪声的能力。隶属函数的参数可由数据集特点计算,削弱了参数选择的影响。提出预选准则以提高模糊聚类的稳定性。计算复杂度分析和实验验证了算法的可行性与实用性。结果表明:该算法在分割质量和效率等方面优于现有算法,适用于各种噪声图像的分割。
|
本文献已被 CNKI 等数据库收录! |
|