首页 | 本学科首页   官方微博 | 高级检索  
     

基于EEMD-Renyi熵和PCA-PNN的滚动轴承故障诊断
引用本文:窦东阳,李丽娟,赵英凯. 基于EEMD-Renyi熵和PCA-PNN的滚动轴承故障诊断[J]. 东南大学学报(自然科学版), 2011, 41(Z1): 107-111. DOI: 10.3969/j.issn.1001-0505.2011.S1.023
作者姓名:窦东阳  李丽娟  赵英凯
作者单位:1. 中国矿业大学化工学院,徐州,221116
2. 南京工业大学自动化与电气工程学院,南京,210009
基金项目:江苏省自然科学基金资助项目(BK2009356); 江苏省高校自然科学研究资助项目(09KJB510003)
摘    要:针对滚动轴承故障特征提取与状态监测问题,提出一种基于集合经验模式分解(EEMD)、Renyi熵、主元分析(PCA)和概率神经网络(PNN)的新方法.首先,将轴承振动信号通过EEMD分解成一组本征模态函数(IMF),计算每个IMF分量的Renyi熵值作为表征故障特征的向量,采用主元分析(PCA)对特征降维,提取主元输入概...

关 键 词:故障诊断  滚动轴承  集合经验模式分解  Renyi熵  主元分析  概率神经网络

Fault diagnosis of rolling bearings using EEMD-Renyi entropy and PCA-PNN
Dou Dongyang,Li Lijuan,Zhao Yingkai. Fault diagnosis of rolling bearings using EEMD-Renyi entropy and PCA-PNN[J]. Journal of Southeast University(Natural Science Edition), 2011, 41(Z1): 107-111. DOI: 10.3969/j.issn.1001-0505.2011.S1.023
Authors:Dou Dongyang  Li Lijuan  Zhao Yingkai
Affiliation:Dou Dongyang1 Li Lijuan2 Zhao Yingkai2 (1 School of Chemical Engineering and Technology,China University of Mining and Technology,Xuzhou 221116,China) (2 School of Automation and Electrical Engineering,Nanjing University of Technology,Nanjing 210009,China)
Abstract:In order to solve the problems of fault feature extraction and condition monitoring of rolling bearings,a novel approach based on the ensemble empirical mode decomposition(EEMD),the Renyi-entropy,the principal component analysis(PCA) and the probabilistic neural network(PNN) is proposed.The vibration signals are first decomposed into a couple of intrinsic mode functions(IMFs) by the EEMD method,and the Renyi entropy of each IMF is computed as the fault characteristic vectors.Then,the PCA is used for feature...
Keywords:fault diagnosis  rolling bearing  ensemble empirical mode decomposition(EEMD)  Renyi entropy  principal component analysis(PCA)  probabilistic neural network(PNN)  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号