首页 | 本学科首页   官方微博 | 高级检索  
     


Melting of the Earth's lithospheric mantle inferred from protactinium-thorium-uranium isotopic data
Authors:Asmerom   Cheng   Thomas   Hirschmann   Edwards
Affiliation:Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque 87131, USA. asmerom@unm.edu
Abstract:The processes responsible for the generation of partial melt in the Earth's lithospheric mantle and the movement of this melt to the Earth's surface remain enigmatic, owing to the perceived difficulties in generating large-degree partial melts at depth and in transporting small-degree melts through a static lithosphere. Here we present a method of placing constraints on melting in the lithospheric mantle using 231Pa-235U data obtained from continental basalts in the southwestern United States and Mexico. Combined with 230Th-238U data, the 231Pa-235U data allow us to constrain the source mineralogy and thus the depth of melting of these basalts. Our analysis indicates that it is possible to transport small melt fractions--of the order of 0.1%--through the lithosphere, as might result from the coalescence of melt by compaction owing to melting-induced deformation. The large observed 231Pa excesses require that the timescale of melt generation and transport within the lithosphere is small compared to the half-life of 231Pa (approximately 32.7 kyr). The 231Pa-230Th data also constrain the thorium and uranium distribution coefficients for clinopyroxene in the source regions of these basalts to be within 2% of one another, indicating that in this setting 230Th excesses are not expected during melting at depths shallower than 85 km.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号