首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进小波包结合CS-BP的地面驱动螺杆泵故障诊断
引用本文:李博文,宋文广,徐加军,张宝. 基于改进小波包结合CS-BP的地面驱动螺杆泵故障诊断[J]. 科学技术与工程, 2023, 23(13): 5641-5646
作者姓名:李博文  宋文广  徐加军  张宝
作者单位:长江大学;中石化胜利油田分公司胜利采油厂;中国石油天然气股份有限公司塔里木油田公司油气工程研究院
基金项目:国家科技重大专项:高温高压油气藏开发动态监测方法与诊断技术研究(2021DJ1006);湖北省科技示范项目:油田数据智能分析研究中心(2019ZYYD016);
摘    要:针对目前地面驱动螺杆泵故障诊断存在效率不高、精度不足、损耗资源的问题,提出通过引入功率谱细化的思想改进小波包变换,再结合布谷鸟搜索(cuckoo search, CS)优化反向传播(back propagation, BP)神经网络的诊断方法。首先,通过改进的小波变换对螺杆泵有功功率分解重构得到特征向量;其次,与瞬时流量、进口回压等参数进行归一化处理,作为BP神经网络的输出层信息;再次,使用布谷鸟搜索寻优得到BP神经网络的权值和阈值,建立CS-BP故障诊断模型;最后,应用于螺杆泵不同故障类型的诊断,并通过与目前的主流诊断方法进行诊断效果的分析比较。结果表明,对于螺杆泵不同类型故障诊断的平均精度达到95.6%,对比分析证明了所提方法的可行性与优越性。

关 键 词:地面驱动螺杆泵  故障诊断  功率谱  小波包变换  布谷鸟搜索  BP神经网络
收稿时间:2022-09-20
修稿时间:2023-02-28

Fault diagnosis of ground-driven screw pump based on improved wavelet packet combined with CS-BP
Li Bowen,Song Wenguang,Xu Jiajun,Zhang Bao. Fault diagnosis of ground-driven screw pump based on improved wavelet packet combined with CS-BP[J]. Science Technology and Engineering, 2023, 23(13): 5641-5646
Authors:Li Bowen  Song Wenguang  Xu Jiajun  Zhang Bao
Affiliation:Yangtze University;Shengli Oil Production Plant, Sinopec Shengli Oilfield Branch; Oil and Gas Engineering Research Institute, Tarim Oilfield Company, China National Petroleum Corporation
Abstract:Aiming at the problems of low efficiency, low precision and resource loss in the fault diagnosis of ground-driven screw pump, this paper proposes a diagnosis method of BP neural network optimized by introducing the idea of power spectrum refinement to improve wavelet packet transform and cuckoo search. Firstly, the active power of the screw pump is decomposed and reconstructed by the improved wavelet transform to obtain the feature vector, and then it is normalized with the parameters such as instantaneous flow and inlet back pressure as the output layer information of the BP neural network. Then the weights and thresholds of BP neural network are obtained by cuckoo search, and the CS-BP fault diagnosis model is established. Finally, it is applied to the diagnosis of different fault types of screw pump, and the average accuracy reaches 95.6 %. The feasibility and superiority of the proposed method are proved by comparing with the current mainstream diagnosis methods.
Keywords:ground-driven screw pump   fault diagnosis   power spectrum   wavelet packet transform   cuckoo search   BP neural network
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号