首页 | 本学科首页   官方微博 | 高级检索  
     

Adaboost.M1 性能提升分析
引用本文:苏巧平,刘原,卢参义. Adaboost.M1 性能提升分析[J]. 新乡学院学报(自然科学版), 2012, 0(5): 416-420
作者姓名:苏巧平  刘原  卢参义
作者单位:安徽新华学院电子通信工程学院;安徽医学高等专科学校医学技术系;中国科学技术大学自动化系
摘    要:在理论上探讨了在一个更弱的条件下 AdaBoost.M1 性能继续增强的可能性,并给出了一个更紧的误差界. 实验结果表明,在这个更弱的条件下,算法有着更强的增强能力.

关 键 词:AdaBoost  M1  算法  多类分类  集成学习

Analysis of Adaboost.M1 Performance Improvement
SU Qiao-ping,LIU Yuan,LU Can-yi. Analysis of Adaboost.M1 Performance Improvement[J]. , 2012, 0(5): 416-420
Authors:SU Qiao-ping  LIU Yuan  LU Can-yi
Affiliation:1.Electronics and Communications Engineering College,Anhui Xinhua University,Hefei 230088,China; 2.Department of Medical Technology,Department of Anhui Medical College,Hefei 230000,China; 3.Department of Automation,University of Science and Technology of China,Hefei 230027,China)
Abstract:In this paper, the possibility is discussed that AdaBoost.M1 continues to improve the performance with a weaker condition, and a tighter error bound is also given out here. The experiment indicates that the algorithm has much better performance under the weaker condition.
Keywords:AdaBoost.M1 algorithm  multi-class classification  ensemble learning
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号