首页 | 本学科首页   官方微博 | 高级检索  
     

基于RS-ICS-BP的列控车载BTM故障诊断
摘    要:针对列车运行控制车载设备结构复杂,信息量大且故障分析多依赖于专家经验完成等问题,以CTCS3-300T型列控车载设备中应答器信息接收模块BTM故障文本数据为样本,提出一种基于粗糙集(Rough Set,RS)和改进布谷鸟搜索算法(Improved Cuckoo Search,ICS)优化神经网络(Back-Propagation,BP)的列控车载BTM智能故障诊断方法(RS-ICS-BP).首先,利用粗糙集理论处理不确定数据的优势对故障数据进行处理,消除冗余条件信息;再利用ICS算法确定适合的BP神经网络初始权值和阈值.以CTCS3-300T型车载设备BTM单元的93组数据为样本进行仿真实验,结果表明:RS-ICS-BP通过加入属性约简提高分类器的分类性能,通过ICS算法优化BP神经网络,避免了局部极小问题,且迭代步数少,平均误差得以降低,分类精度有所提升.

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号