摘 要: | 目的 解决中文命名实体识别任务中存在的一词多义以及标签分类不均衡问题。方法 提出一种融合焦点损失(Focal Loss)函数的ERNIE-BiGRU-CRF-FL实体识别方法。使用ERNIE预训练模型获取动态词向量,解决一词多义问题;双向门控循环单元(BiGRU)捕捉双向语义信息;条件随机场(CRF)解码得到命名实体标签;同时引入Focal Loss对CRF进行优化,缓解序列标注中标签分类不均衡的问题。结果 经过在MSRA语料库中进行实验,ERNIE-BiGRU-CRF-FL模型的实体识别效果优于其它模型,其精确率、召回率和F1值分别达到了94.45%、94.37%和94.41%。结论 ERNIE-BiGRU-CRF-FL模型能更好地识别出中文文本中的命名实体,具有一定的实用价值。
|