首页 | 本学科首页   官方微博 | 高级检索  
     

基于人工鱼群优化LS-SVM的卫星钟差预报
作者姓名:刘继业  陈西宏  刘强  孙际哲
作者单位:空军工程大学防空反导学院,陕西西安,710051
基金项目:国家自然科学基金资助项目(61172169)
摘    要:针对导航卫星短期钟差预报精度不高的问题,提出了一种基于人工鱼群(AFSA)优化最小二乘支持向量机(LS-SVM)的卫星钟差预报方法。利用人工鱼群算法较强的全局寻优能力优化LS-SVM模型的惩罚参数和核宽度参数,避免人为选择参数的盲目性,提高了LS-SVM的泛化能力和预报精度。选取IGS产品中4颗典型卫星的钟差数据,分别采用人工鱼群优化LS-SVM模型、神经网络模型和灰色系统模型进行短期钟差预报,计算结果表明:人工鱼群优化LS-SVM模型的预报精度优于其它2种模型,尤其是在铷钟方面,预报误差在0.5 ns内,运行时间在5 min内。

关 键 词:卫星钟差  人工鱼群算法  最小二乘支持向量机
点击此处可从《空军工程大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《空军工程大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号