首页 | 本学科首页   官方微博 | 高级检索  
     

工程结构模态的连续型随机子空间分解识别方法
引用本文:姚志远,汪凤泉,刘艳. 工程结构模态的连续型随机子空间分解识别方法[J]. 东南大学学报(自然科学版), 2004, 34(3): 382-385
作者姓名:姚志远  汪凤泉  刘艳
作者单位:东南大学土木工程学院,南京,210096;东南大学土木工程学院,南京,210096;东南大学土木工程学院,南京,210096
基金项目:国家自然科学基金资助项目 (5 9775 0 2 2 )
摘    要:环境振动识别方法利用结构的输出信号识别结构的模态参数,主要的识别方法有时间序列分析法、ERA(eigensystem realization algorithm)法和随机子空间法,这些方法均基于离散模型.基于连续随机子空间模型,本文给出了一种识别大型工程结构模态参数的方法.运用SVD(singular value decomposition)分解将含噪声的输出信号空间分解为信号空间和噪声空间,然后直接估计结构的模态参数.SVD分解保证了算法的鲁棒性.最后讨论了一个7层框架的理想建筑,仿真计算表明,该方法简单有效,能够使用在桥梁和建筑的健康监测和振动控制中.

关 键 词:环境振动  参数识别  模态识别
文章编号:1001-0505(2004)03-0382-04

Stochastic subspace identification method based on continuous model for modal parameters of engineering structures
Yao Zhiyuan Wang Fengquan Liu Yan. Stochastic subspace identification method based on continuous model for modal parameters of engineering structures[J]. Journal of Southeast University(Natural Science Edition), 2004, 34(3): 382-385
Authors:Yao Zhiyuan Wang Fengquan Liu Yan
Abstract:Ambient vibration method is identification of the modal parameters for structures by the output data. Main identification methods are based on disperse space model,such as time serials analysis,ERA (eigensystem realization algorithm) method and stochastic subspace method. Based on the continuous stochastic subspace model,an identification approach was investigated to estimate structural modals under operating conditions. The output signal space was decomposed into signal space and noise space by SVD (singular value decomposition) method,then the modal parameters were estimated directly. SVD method ensured the algorithm's robustness. Finally,a 7-story steel frame building was discussed. The numerical simulation shows that the method is of simplicity and effectiveness,and it can be used in health monitoring and vibration controlling for bridges and architectures.
Keywords:ambient vibration  parameter identification  modal identification
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号