首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的局域线性嵌入算法在图像检索中的应用
引用本文:张银霞,邓文新. 基于支持向量机的局域线性嵌入算法在图像检索中的应用[J]. 齐齐哈尔大学学报(自然科学版), 2009, 25(4): 14-17
作者姓名:张银霞  邓文新
作者单位:齐齐哈尔大学,黑龙江齐齐哈尔,161006
摘    要:SVM算法复杂度与样本维数无关,具有的泛化能力强、分类精度高的特点,而LLE是有效的非线性降维方法,本文利用支持向量机(SVM)算法对局域线性嵌入(LLE)算法进行改进,有效地解决了基于内容的图像检索中的高维特征向量的降维问题,实验表明具有较高的查全率和查准率.

关 键 词:支持向量机  局域线性嵌入  图像检索

Application of locally linear embedding algorithm based on support vector machine in image retrieval
ZHANG Yin-xia,DENG Wen-xin. Application of locally linear embedding algorithm based on support vector machine in image retrieval[J]. Journal of Qiqihar University(Natural Science Edition), 2009, 25(4): 14-17
Authors:ZHANG Yin-xia  DENG Wen-xin
Affiliation:Qiqihar University;Heilongjiang Qiqihar 161006;China
Abstract:SVM has the generalization ability and high precision classification,and the algorithm complexity has nothing to do with the dimension of samples,LLE is an effective non-linear dimension reduction methods.This paper improved Locally Linear Embedding(LLE) algorithm used with Support Vector Machine(SVM) algorithm,and solved the dimension reduction problems of high-dimensional characteristics vector in the content-based image retrieval.The experiments showed that has high accurate rate and complete rate.
Keywords:support vector machine  locally linear embedding  image retrieval  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号