首页 | 本学科首页   官方微博 | 高级检索  
     

基于大数据的智能制造岗位与技能需求研究
引用本文:刘祺彬,高祥兰,何凤琴,李新元. 基于大数据的智能制造岗位与技能需求研究[J]. 上海师范大学学报(自然科学版), 2024, 53(2): 236-240
作者姓名:刘祺彬  高祥兰  何凤琴  李新元
作者单位:上海师范大学 信息与机电工程学院, 上海 201418;上海立达学院 数字科学学院, 上海 201609
摘    要:在不违反相关协议准则的情况下,通过爬虫技术获取智能制造岗位数据,并对其进行清洗与脱敏处理. 应用Jieba中文分词工具、K-means聚类算法与隐含狄利克雷分布(LDA)模型,将岗位名称分为6类,将技能集分为8类. 最后,构建需求矩阵并归一化处理,得到各技能集对岗位簇的重要程度,为专业选择、课程建设与从业人员发展提供参考.

关 键 词:智能制造  大数据分析  K-means  隐含狄利克雷分布(LDA)模型  需求评估
收稿时间:2023-12-23

Research on intelligent manufacturing positions and skill requirements based on big data
LIU Qibin,GAO Xianglan,HE Fengqin,LI Xinyuan. Research on intelligent manufacturing positions and skill requirements based on big data[J]. Journal of Shanghai Normal University(Natural Sciences), 2024, 53(2): 236-240
Authors:LIU Qibin  GAO Xianglan  HE Fengqin  LI Xinyuan
Affiliation:College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201418, China;School of Digital Science, Shanghai Lida University, Shanghai 201609, China
Abstract:Without violating relevant protocol guidelines, the intelligent manufacturing job data was obtained by crawler technology, which was cleaned and desensitized in this paper. By Jieba Chinese text segmentation, as well as clustering algorithms such as K-means clustering algorithm and latent Dirichlet allocation (LDA) model, job titles were categorized into six clusters. Besides, skills were classified into eight clusters. Finally, a demand matrix was constructed and normalized, revealing the importance of each skill set to job clusters. The research was able to provide reference of choosing majors, curriculum development and the professional development of practitioners.
Keywords:intelligent manufacturing  big data analysis  K-means  latent Dirichlet allocation (LDA) model  demand assessment
点击此处可从《上海师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《上海师范大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号