摘 要: | 尽管卷积神经网络浅层特征可蕴含一些细节信息,但也包含大量噪声。对于宽裂缝,浅层信息则作用不大。因此,本文提出了一个基于VGG16骨架并融合深层特征的FCN分割网络,并在每层加入侧边输出以直接监督模型。此外,我们还采用了一种名为Focal Loss的损失函数来解决数据集本身正负样本分类不平衡的问题。这种多尺度多通道深层特征与独特的损失函数融合应用,使网络具备很强的抗干扰性和更快的收敛速度。在DeepCrack数据集上,本文提出的深层特征融合网络(Deep Feature Fusion Network,DFFN)与HED、FCN和DeepCrack相比,表现出更好的性能和更快的推理速度。
|