摘 要: |  机械臂电机振动信号的采集效果较差,影响时频特性分析过程,导致故障诊断效果与精度较差,为此提出基于深度学习和激光多普勒测振技术的机械臂电机故障时频尺度诊断方法。使用激光多普勒测振技术与小波阈值去噪算法,建立机械臂电机振动信号采集系统,获取并重构故障信号;提取电机振动信号的时域、频域等尺度特征,引入人工神经网络建立一个具备学习能力的故障诊断模型,将提取的机械臂电机故障时域、频域等尺度特征输入诊断模型中,输出分类诊断结果,即可完成机械臂电机故障时频尺度诊断。结果表明:利用该方法开展电机故障诊断时,检测结果与实际电机故障类型之间偏差较小,诊断效果好、精度高。
|