首页 | 本学科首页   官方微博 | 高级检索  
     

基于核极限学习机的下肢关节力矩预测方法
引用本文:宋永献,王祥祥,李媛媛,夏文豪,李豪,宋文泽. 基于核极限学习机的下肢关节力矩预测方法[J]. 科学技术与工程, 2024, 24(11): 4599-4606
作者姓名:宋永献  王祥祥  李媛媛  夏文豪  李豪  宋文泽
作者单位:江苏海洋大学;四川大学
基金项目:江苏省“六大人才高峰”高层次人才培养资助项目(2019-XYDXX-243);江苏省产学研合作项目(BY2022538);江苏省研究生科研与实践创新计划项目(SY202129X)
摘    要:针对极限学习机(extreme learning machine, ELM)预测下肢关节力矩时,随机初始化输入权重和偏置影响模型准确度问题,提出一种基于核极限学习机(kernel based extreme learning machine, KELM)的下肢康复机器人关节力矩预测方法。该方法将高斯核函数与ELM相融合,并采用遗传算法(genetic algorithm, GA)与粒子群优化(particle swarm optimization, PSO)结合的基因粒子群GAPSO对KELM的参数进行优化。首先,采集1位在跑步机上以0.4、0.5、0.6、0.7和0.8 m/s等5个不同速度行走的右下肢偏瘫患者运动数据并对数据进行预处理;其次,通过GAPSO对KELM进行优化,获得最优正则化系数C和核函数宽度参数S,将输出关节力矩与反向生物力学分析计算的关节作比较;最后,利用均方根误差(root mean square error, RMSE)和相关系数P来评价算法优越性。实验结果表明,基于GAPSO优化后的KELM(GAPSO-KELM)算法相对于PSO-KELM算法、KELM算法...

关 键 词:高斯核函数  极限学习机  粒子群优化算法  遗传算法  均方根误差  相关系数
收稿时间:2023-04-14
修稿时间:2024-02-19

Research on Lower Limb Joint Moment Prediction Method Based on Kernel Limit Learning Machine
Song Yongxian,Wang Xiangxiang,Li Yuanyuan,Xia Wenhao,Li Hao,Song Wenze. Research on Lower Limb Joint Moment Prediction Method Based on Kernel Limit Learning Machine[J]. Science Technology and Engineering, 2024, 24(11): 4599-4606
Authors:Song Yongxian  Wang Xiangxiang  Li Yuanyuan  Xia Wenhao  Li Hao  Song Wenze
Affiliation:Jiangsu Ocean University
Abstract:A kernel based extreme learning machine (KELM) method is proposed for predicting joint moments of lower limb rehabilitation robots to address the problem that random initialization of input weights and bias affect the accuracy of the model when predicting lower limb joint moments by extreme learning machine (ELM).The method integrates Gaussian kernel function with ELM and uses genetic algorithm (GA) combined with particle swarm optimization (PSO) of genetic algorithm- particle swarm optimization (GAPSO) to optimize the parameters of KELM. Firstly, the motion data of a patient with right lower limb hemiplegia walking on a treadmill at 5 different speeds of 0.4, 0.5, 0.6, 0.7 and 0.8 m/s were collected and preprocessed; secondly, the KELM was optimized by GAPSO to obtain the optimal regularization coefficient C and kernel function width parameter S. obtain the optimal parameters C and S. The output joint moments were compared with the joints calculated by inverse biomechanical analysis; finally, the root mean square (RMSE) and correlation coefficient (P) were used to evaluate the superiority of the algorithm. The experimental results show that the average maximum root mean square error of KELM algorithm based on GAPSO(GAPSO-KELM) optimization is 14%, 18% and 28% lower than that of PSO-KELM algorithm, KELM algorithm and ELM algorithm, respectively, and the minimum P is 0.84 except for 0.8 m/s right ankle inversion, which is 0.79. The GAPSO-KELM algorithm further improves the prediction accuracy, making it a more effective algorithm support for rehabilitation treatment.
Keywords:gaussian kernel function   extreme learning machine   particle swarm optimization   genetic algorithm   root mean square error   correlation coefficient
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号