首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于多因素粒子群-神经网络算法的短期电价预测
作者姓名:
张宝芳
李晓东
作者单位:
广西水利电力职业技术学院;
摘 要:
本文提出在神经网络训练中引入基于全局随机优化思想的粒子群优化(PSO)算法,先利用PSO优化BP神经网络的初始权值,然后采用神经网络完成给定精度的学习,建立了粒子群-BP神经网络模型。对美国PJM电力市场的实际电价(LMP)进行预测.与传统BP神经网络相比,该方法收敛速度快、所需历史数据少、预报精度高,验证了该方法的有效性和可行性。
关 键 词:
电力市场
电价预测
粒子群算法
BP神经网络
本文献已被
CNKI
维普
等数据库收录!
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号